Juxtaposition of diverse, subduction-related tectonic blocks with contrasting metamorphic features and ages in the Paleoproterozoic Aketashitage orogen, NW China: Implications for Precambrian orogeny

Author:

Zhang Qian W.L.1,Liu Jia-Hui1,Li Zhen M.G.1,Shi Meng-Yan12,Chen Yi-Chao1,Wu Chun-Ming1

Affiliation:

1. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, P.O. Box 4588, Beijing 100049, China

2. Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China

Abstract

The comprehensive investigation of orogenic-related litho-structural assemblages, metamorphism, and geochronology in early Precambrian orogens can help us better understand the features of plate tectonics in early Earth. The Paleoproterozoic Aketashitage orogenic belt is located at a key position in northwestern China and connects the North China craton, Tarim craton, Altaids orogen, and Tethys orogen. Garnet-bearing mafic and paragneissic granulite occur as interlayers or blocks preserved within paragneissic matrix, and two to three generations of metamorphic mineral assemblages were identified. Geothermobarometry and pseudosection modeling yielded clockwise metamorphic P-T paths passing from 7.5‒8.6 kbar/575‒715 °C (M1) through 7.4‒12.2 kbar/715‒895 °C (M2) and finally to 5.2‒7.3 kbar/710‒800 °C (M3) for the mafic and paragneissic granulite as well as amphibolite, which is indicative of metamorphic features of subduction/collision zones. Peak metamorphic P-T conditions of all the samples lie in the medium P/T facies series, suggesting that the thermal gradient (∼20‒31 °C/km) of this Paleoproterozoic orogenic belt was obviously higher than most of the Phanerozoic subduction zones. Secondary ion mass spectrometry (SIMS) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb dating of zircon and monazite yielded metamorphic ages of ca. 1.98−1.96 Ga in the eastern part of the orogen, ca. 1.86−1.85 Ga in the western part, and a maximum depositional age of ca. 2.06 Ga for paragneiss. Compared with previous studies, the Aketashitage orogen is composed of unordered juxtaposition of diverse, subduction-related tectono-metamorphic blocks with different protoliths, metamorphic grades, and ages preserved within the paragneissic matrix deposited in the Paleoproterozoic, which is highly similar to Phanerozoic mélange. A Paleoproterozoic subduction-metamorphic-exhumation-accretionary process was deciphered, similar to that found in accretionary/orogenic wedge in Phanerozoic orogens. The juxtaposition of diverse, subduction-related tectonic blocks with contrasting ages and metamorphic features can serve as a marker of early Precambrian orogens and plate tectonics.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3