Subduction initiation of the western Proto-Tethys Ocean: New evidence from the Cambrian intra-oceanic forearc ophiolitic mélange in the western Kunlun Orogen, NW Tibetan Plateau

Author:

Zhang Qichao1,Li Zhong-Hai2,Wu Zhenhan1,Chen Xuanhua1,Zhang Ji'en3,Yang Yan1

Affiliation:

1. Chinese Academy of Geological Sciences, Beijing 100037, China

2. Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Abstract

Abstract The supra-subduction zone ophiolite or ophiolitic mélange formed in the forearc setting is generally considered to be a key geological record for subduction initiation (SI) with petrological characteristics comparable to the SI-related rock sequence from forearc basalt (FAB) to boninite in the Izu-Bonin-Mariana subduction zone. Nevertheless, the standard FAB and boninite are generally difficult to observe in the forearc rocks generated during SI. Yet, a typical rock sequence indicating the SI of the western Proto-Tethys Ocean is reported for the first time in the Qimanyute intra-oceanic forearc system in the western Kunlun Orogen, Northwest Tibetan Plateau. The magmatic compositions, which range from less to more high field strength element (HFSE)-depleted and large ion lithophile element (LILE)-enriched, are changing from oceanic plagiogranites (ca. 494 Ma) to forearc basalt-like gabbros (FAB-Gs, ca. 487 Ma), boninites, and subsequent Nb-enriched gabbros (NEGs, ca. 485 Ma), which are thus consistent with the Izu-Bonin-Mariana forearc rocks as well as the Troodos and Semail supra-subduction zone-type ophiolites. The geochemical data from the chemostratigraphic succession indicate a subduction initiation process from a depleted mid-oceanic-ridge (MORB)-type mantle source with no detectable subduction input to gradual increasing involvement of subduction-derived materials (fluid/melts and sediments). The new petrological, geochemical, and geochronological data, combined with the regional geology, indicate that the well-sustained FAB-like intrusive magmas with associated boninites could provide crucial evidence for SI and further reveal that the SI of the western Proto-Tethys Ocean occurred in the Late Cambrian (494–485 Ma).

Publisher

Geological Society of America

Subject

Geology

Reference86 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3