Paleogene mid-crustal intrusions in the Ruby Mountains–East Humboldt Range metamorphic core complex, northeastern Nevada, USA

Author:

Snoke Arthur W.1,Barnes Calvin G.2,Howard Keith A.3,Romanoski Anthony2,Premo Wayne R.4,Hetherington Callum J.2,Strike Andrew T.5,Frost Carol D.1,Copeland Peter6,Lee Sang-yun7

Affiliation:

1. 1Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming 82071-2000, USA

2. 2Department of Geosciences. Texas Tech University, Lubbock, Texas 79409-1053, USA

3. 3U.S. Geological Survey, Moffett Field, California 94035, USA

4. 4U.S. Geological Survey, Denver, Colorado 80225, USA

5. 5205 South 3rd Street, Lander, Wyoming 82520, USA

6. 6Department of Earth and Atmospheric Science, University of Houston, Houston, Texas 77204, USA

7. 7CTL Group, 5400 Old Orchard Road, Skokie, Illinois 60077-1030, USA

Abstract

Abstract Middle Eocene to early Oligocene intrusions, widespread in the Ruby Mountains–East Humboldt Range metamorphic core complex, Nevada, USA, provide insights into a major Paleogene magmatic episode and its relation to tectonism in the northeastern Great Basin. These intrusions, well-exposed in upper Lamoille Canyon, range in composition from gabbro to leucomonzogranite. They form small plutons, sheets, and dikes that intrude the metamorphic and granitic infrastructure of the core complex. Two types of Paleogene monzogranite were recognized. The first is exemplified by two of the larger intrusive bodies, the Snow Lake Peak and Castle Lake intrusions, which occur as sheet-like bodies near and at the structural base of metamorphosed Neoproterozoic and Cambrian Prospect Mountain Quartzite where it is inverted above Cambrian and Ordovician marble of Verdi Peak in the Lamoille Canyon nappe. Swarms of dikes are associated with these intrusions. U-Pb (zircon) ages range ca. 40–33 Ma and typically display relatively simple and minor inheritance. The rocks have the lowest εHf (zircon) and εNd (whole rock) of any of the middle Cenozoic granites. The second type of monzogranite, Overlook type, typically occurs as thin, isolated dikes and leucosome-like bodies in Late Cretaceous granites of the infrastructure, with no obvious relationship to the large monzogranite bodies. Overlook-type monzogranite displays complex zircon inheritance, yields igneous ages ca. 37–32 Ma, and has εHf (zircon) and εNd (whole rock) identical to those of Late Cretaceous granites in the core complex. These isotopic and field data indicate that Overlook-type monzogranite formed in situ through anatexis of host Cretaceous granites. A pervasive thermal event was required to stimulate this crustal melting. Gabbros from Lamoille Canyon and quartz diorite dated from 32 km away signal mantle-derived magmatism ca. 39–37 Ma (U-Pb, zircon) was a driver of crustal melting and hybridization. Eocene 40Ar/39Ar apparent ages on hornblende and biotite are consistent with syn- to post-magmatic extensional exhumation and decompression. Thus, the core complex provides a window into trans-crustal magmatism and insight into how such magmatism affected the Nevadaplano orogenic plateau. This Paleogene thermal pulse, which may relate to removal of the Farallon slab by delamination of mantle lithosphere, involved partial melting of the upper mantle and transfer of magma and heat to the Nevadaplano crust. Lower-crustal melting of Archean(?) to Paleoproterozoic rocks resulted in Snow Lake Peak–type magmas, and middle-crustal melting of granite in the infrastructure yielded Overlook-type magmas. This crustal magmatism, as exemplified by the intrusions in the core complex, likely played a role in destabilizing the Nevadaplano and its later collapse during middle Miocene extension. The Paleogene intrusions and associated structural features also provide insight into the evolution of the core complex through either the buoyant upwelling of a melt-rich diapir (gneiss-dome model) or buoyant upwelling of the melt-rich middle crust synchronous with a west-rooted mylonitic shear zone (extensional shear-zone model). We favor a hybrid that incorporates both models.

Publisher

Geological Society of America

Reference138 articles.

1. Fold and thrust tectonics of the western United States exclusive of the accreted terranes;Allmendinger,1992

2. Structural Geology Algorithms—Vectors and Tensors in Structural Geology;Allmendinger,2013

3. The Dynamics of Faulting and Dyke Formation with Applications to Britain;Anderson,1951

4. The effects of temperature and fO2 on the Al-in-hornblende barometer;Anderson;American Mineralogist,1995

5. Schlieren-bound magmatic structures record crystal flow-sorting in dynamic upper-crustal magma-mush chambers;Ardill;Frontiers of Earth Science,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3