Two-phase kinematic evolution of the Qilian Shan, northern Tibetan Plateau: Initial Eocene−Oligocene deformation that accelerated in the mid-Miocene

Author:

Li Bing123,Qi Bangshen4,Chen Xuanhua12,Zuza Andrew V.5,Hu Daogong4,Sun Yujun12,Wang Zeng-Zhen13,Zhang Yiping1

Affiliation:

1. 1Chinese Academy of Geological Sciences, Beijing 100037, China

2. 2Sinoprobe Laboratory, Ministry of Natural Resources of China, Beijing 100037, China

3. 3Technology Innovation Center for Exploration and Exploitation of Strategic Mineral Resources in Plateau Desert Region, Ministry of Natural Resources of China, Xining 810001, China

4. 4Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China

5. 5Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada 89557, USA

Abstract

The Cenozoic growth of the Tibetan Plateau and the distribution of deformation across it are a consequence of India-Asia collision and continued convergence, which have implications for studies of continental tectonics. The spatio-temporal development of Cenozoic deformation along the northern margin of the plateau is an important issue that can be better understood by testing various models of plateau growth. The northern Tibetan Plateau is bounded by the Cenozoic Qilian Shan thrust belt and the Haiyuan left-slip fault. We conducted geologic mapping, field observations, electron spin resonance (ESR) dating, and apatite (U-Th)/He (AHe) and apatite fission-track (AFT) analysis in the Qilian Shan thrust belt to improve our understanding of the timing of brittle faulting and range exhumation in the northern Tibetan Plateau. We document the first direct age constraints for Oligocene deformation within the central Qilian Shan via ESR dating, which correlates with AHe-AFT cooling ages in adjacent ranges. We demonstrate that the Qilian Shan thrust belt experienced a two-phase growth history, including Eocene−Oligocene fault-related uplift shortly after the India-Asia convergence, and mid-Miocene regional overprinting deformation that reactivated the proximal thrust faults. This deformational pattern suggests that the Qilian Shan thrust belt has experienced out-of-sequence development since the Eocene−Oligocene and has persisted as the stationary northeastern boundary of the Himalayan-Tibetan Orogen throughout the Cenozoic. The Paleozoic Qilian suture systems acted as a pre-existing weakness and played a decisive role in controlling the lithospheric rheology, which therefore impacted the timing, pattern, and strain distribution of Cenozoic deformation across the northern Tibetan Plateau.

Publisher

Geological Society of America

Subject

Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3