A tale of five enclaves: Mineral perspectives on origins of mafic enclaves in the Tuolumne Intrusive Complex

Author:

Barnes C.G.1ORCID,Werts K.1,Memeti V.2,Paterson S.R.3,Bremer R.2

Affiliation:

1. Department of Geosciences, Texas Tech University, Lubbock, Texas 79409-1053, USA

2. Department of Geological Sciences, California State University, Fullerton, Fullerton, California 92834, USA

3. Department of Earth Sciences, University of Southern California, Los Angeles, California 90089, USA

Abstract

Abstract The widespread occurrence of mafic magmatic enclaves (mme) in arc volcanic rocks attests to hybridization of mafic-intermediate magmas with felsic ones. Typically, mme and their hosts differ in mineral assemblage and the compositions of phenocrysts and matrix glass. In contrast, in many arc plutons, the mineral assemblages in mme are the same as in their host granitic rocks, and major-element mineral compositions are similar or identical. These similarities lead to difficulties in identifying mixing end members except through the use of bulk-rock compositions, which themselves may reflect various degrees of hybridization and potentially melt loss. This work describes the variety of enclave types and occurrences in the equigranular Half Dome unit (eHD) of the Tuolumne Intrusive Complex and then focuses on textural and mineral composition data on five porphyritic mme from the eHD. Specifically, major- and trace-element compositions and zoning patterns of plagioclase and hornblende were measured in the mme and their adjacent host granitic rocks. In each case, the majority of plagioclase phenocrysts in the mme (i.e., large crystals) were derived from a rhyolitic end member. The trace-element compositions and zoning patterns in these plagioclase phenocrysts indicate that each mme formed by hybridization with a distinct rhyolitic magma. In some cases, hybridization involved a single mixing event, whereas in others, evidence for at least two mixing events is preserved. In contrast, some hornblende phenocrysts grew from the enclave magma, and others were derived from the rhyolitic end member. Moreover, the composition of hornblende in the immediately adjacent host rock is distinct from hornblende typically observed in the eHD. Although primary basaltic magmas are thought to be parental to the mme, little or no evidence of such parents is preserved in the enclaves. Instead, the data indicate that hybridization of already hybrid andesitic enclave magmas with rhyolitic magmas in the eHD involved multiple andesitic and rhyolitic end members, which in turn is consistent with the eHD representing an amalgamation of numerous, compositionally distinct magma reservoirs. This conclusion applies to enclaves sampled <30 m from one another. Moreover, during amalgamation of various rhyolitic reservoirs, some mme were evidently disrupted from a surrounding mush and thus carried remnants of that mush as their immediately adjacent host. We suggest that detailed study of mineral compositions and zoning in plutonic mme provides a means to identify magmatic processes that cannot be deciphered from bulk-rock analysis.

Publisher

Geological Society of America

Subject

Stratigraphy,Geology

Reference108 articles.

1. A cascade of magmatic events during the assembly and eruption of a super-sized magma body;Allan;Contributions to Mineralogy and Petrology,2017

2. Local equilibrium of mafic enclaves and granitoids of the Turtle pluton, southeast California: Mineral, chemical, and isotopic evidence;Allen;The American Mineralogist,1991

3. Segregation vesicles, gas filter-pressing, and igneous differentiation;Anderson;The Journal of Geology,1984

4. The genesis of intermediate and silicic magmas in deep crustal hot zones;Annen;Journal of Petrology,2006

5. Schlieren-bound magmatic structures record crystal flow-sorting in dynamic upper-crustal magma-mush chambers;Ardill;Frontiers of Earth Science,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3