Recycling of mercury from the atmosphere-ocean system into volcanic-arc–associated epithermal gold systems

Author:

Deng Changzhou1,Sun Guangyi2,Rong Yimeng2,Sun Ruiyang1,Sun Deyou3,Lehmann Bernd4,Yin Runsheng1

Affiliation:

1. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

2. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

3. College of Earth Sciences, Jilin University, Changchun 130061, China

4. Department of Mineral Resources, Technical University of Clausthal, Clausthal-Zellerfeld 38678, Germany

Abstract

Abstract Photochemical processes generate mass-independent fractionation (MIF) of mercury (Hg) isotopes in the atmosphere-ocean system, and the subduction of marine sediments or hydrated oceanic crust may recycle the resultant Hg isotope signature into the volcanic-arc environment. This environment typically hosts epithermal gold deposits, which are characterized by a specific Hg-Sb-As metal association. We investigated the Hg isotopic composition of seven volcanic-arc–related epithermal gold deposits in northeast China and revisited the isotopic composition of Hg in hydrothermal ore deposits in circum-Pacific and Mediterranean volcanic arcs. The gold ore samples in northeast China mostly display positive Δ199Hg values (0.11‰ ± 0.07‰, 1σ, n = 48) similar to those observed in the Pacific Rim (0.07‰ ± 0.09‰, 1σ, n = 182) and the Mediterranean Cenozoic volcanic belt (0.09‰ ± 0.08‰, 1σ, n = 9). Because Hg in marine sediments and seawater has positive Δ199Hg, we infer that Hg-bearing epithermal deposits in active continental margin settings receive most Hg from recycled seawater in marine sediments, through the release of Hg by dehydration from the subducting oceanic slab. However, negative to near-zero Δ199Hg values were observed in Hg-bearing deposits in the South China craton (−0.09‰ ± 0.05‰, 1σ, n = 105) and in the intraplate magmatic-hydrothermal Almadén Hg deposit in Spain (−0.02‰ ± 0.06‰, 1σ, n = 26), which are considered to relate to basement and mantle sources, respectively. Hg isotopes have the potential to trace lithospheric Hg cycling.

Publisher

Geological Society of America

Subject

Geology

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3