U-Pb geochronology of apatite crystallized within a terrestrial impact melt sheet: Manicouagan as a geochronometer test site

Author:

McGregor Maree1,McFarlane Christopher R.M.2,Spray John G.1

Affiliation:

1. Planetary and Space Science Centre, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada

2. Department of Earth Sciences, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada

Abstract

ABSTRACT The Manicouagan impact event has been the subject of multiple age determinations over the past ~50 yr, providing an ideal test site for evaluating the viability of different geochronometers. This study highlights the suitability of Manicouagan’s essentially pristine impact melt body as a medium for providing insight into the U-Pb isotope systematics of geochronometers in the absence of shock-related overprinting. We performed in situ laser-ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) U-Pb geochronology on apatite and zircon, both of which crystallized as primary phases. This study is the first application of U-Pb geochronology to apatite crystallized within a terrestrial impact melt sheet. U-Pb analyses were obtained from 200 melt-grown apatite grains (n = 222 spots), with a data subset providing a lower-intercept age of 212.5 ± 8.0 Ma. For melt-grown zircon, a total of 30 analyses from 28 grains were obtained, with a subset of the data yielding a lower-intercept age of 213.1 ± 1.6 Ma. The lower precision (±8.0 Ma; ±3%) obtained from apatite is a consequence of low U and a high and variable common-Pb composition. This resulted from localized Pb*/PbC heterogeneity within the impact melt sheet that was incorporated into the apatite crystal structure during crystallization (where Pb*/PbC is the ratio of radiogenic Pb to common Pb). While considered a limitation to the precision obtainable from melt-grown apatite, its ability to record local-scale isotopic variations highlights an advantage of U-Pb studies on melt-grown apatite. The best-estimate ages from zircon and apatite overlap within error and correlate with previously determined ages for the Manicouagan impact event. An average formation age from the new determinations, combined with previous age constraints, yields a weighted mean age of 214.96 ± 0.30 Ma for the Manicouagan impact structure.

Publisher

Geological Society of America

Reference55 articles.

1. Fossil meteorite craters;Beals,1963

2. Dating the cooling of exhumed central uplifts of impact structures by the (U-Th)/He method: A case study at Manicouagan;Biren;Chemical Geology,2014

3. U-Pb LA-ICP-MS dating using accessory mineral standards with variable common Pb;Chew;Chemical Geology,2014

4. New insights on the 1.7–1.0 Ga crustal evolution of the central Grenville Province from the Manicouagan–Baie Comeau transect;Dunning;Precambrian Research,2010

5. Earth Impact Database, 2020, Earth Impact Database: Planetary and Space Science Centre, Canada, http://www.passc.net/EarthImpactDatabase (accessed July 2020).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distinguishing friction- from shock-generated melt products in hypervelocity impact structures;Large Meteorite Impacts and Planetary Evolution VI;2021-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3