Multistage melt/fluid modification of lithospheric mantle beneath the circum-cratonic orogenic belt: Evidence from the Tuoyun peridotite xenoliths

Author:

Bian Xiao1,Su Yuping1,Zheng Jianping1,Wang Jian1,Chen Xi2,Zhou Liang1,Dong Bi’an1,Niu Tianyi1

Affiliation:

1. 1State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China

2. 2School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China

Abstract

The juvenile and moderate refractory mantle beneath the circum-cratonic orogenic belt is traditionally believed to be hotter and thinner than the ancient refractory cratonic mantle; it is thus more unstable and subject to modification by melts/fluids. Understanding these modification processes would help to elucidate the evolution of Earth’s continents. Peridotite xenoliths carried by the Tuoyun Cenozoic lamprophyre from the southwestern Tianshan belt show evidence of widespread multistage melt/fluid modification of the unstable circum-cratonic orogenic belt mantle. Tuoyun peridotites mainly consist of moderately refractory to fertile lherzolites (Mg# in Ol: 85.5−90.7; Cr# in Sp: 12.7−26.5) and show strong mechanical modification. They can be divided into four groups (A, B, C1, and C2) based on petrography and mineral chemistry. Group A lherzolites show relatively high basaltic components (Al2O3, CaO, TiO2, and FeO) and are enriched in large ion lithophile elements (LILEs) and rare earth elements (REEs), which indicates melt-peridotite reaction processes at high melt/rock ratios. The high modal pyroxene content in Group A suggests that the addition of high-Si melts caused the transition from olivine to pyroxene. Group B lherzolites show high modal pyroxene but relatively depleted incompatible elements, which should be superimposed by later melt extraction. Comparatively, Group C lherzolites exhibit higher modal olivine but lower basaltic components. The clinopyroxene cores of Group C1 are characterized by high (La/Yb)N and low Ti/Eu content, negative high field strength element (HFSE) anomalies, and relatively high 87Sr/86Sr ratios (cores: 0.70331−0.70457), which suggest metasomatism by carbonatite melts originating from recycled sedimentary carbonate. The Group C1 clinopyroxene (spongy rims) and Group C2 clinopyroxene (cores and spongy rims) have positive Sr anomalies, depleted HFSEs, and spoon-shaped REE patterns, which suggest modification by evolved small-volume and volatile-rich silicate melts. In addition, the melt pockets around spinels and the reactive zones of pyroxenes near the lamprophyre reveal the recent incongruent dissolution induced by the host rock. Based on our research and previously reported geological data, we propose that the high-Si melts and carbonatite melts are the products of dehydration and partial melting of the Paleo-Asian oceanic crust, and lithospheric delamination and fracturing (e.g., the Talas-Fergana strike-slip fault) provided the opportunity for small-volume and volatile-rich silicate melts and basaltic melts to modify the peridotites. Multistage melts/fluids and the deformation process are the protagonists in the evolutionary process of the circum-cratonic lithospheric mantle, with important implications for mantle destabilization and multilayered interaction.

Publisher

Geological Society of America

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3