Affiliation:
1. Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, 2534 North University Building, 1100 North University Avenue, Ann Arbor, Michigan 48109-1005, USA
Abstract
Abstract
A detailed petrological study is presented to constrain the origin of a suite of alkali olivine basalt and hawaiite (>5 wt% MgO) lavas that were erupted in a rift zone within the western Mexican arc (Trans-Mexican Volcanic Belt), adjacent to the Sangangüey andesitic stratovolcano, together with more evolved lavas (mugearites and benmoreites; <5 wt% MgO). As previously documented in the literature, the Sangangüey mafic lavas are devoid of any arc geochemical signature, despite their location within an arc. In this study, a new olivine-melt thermometer/hygrometer, based on the partitioning behavior of Ni2+ and Mg2+, was applied to the Sangangüey basalts (SB). The results show that the high-MgO (>9 wt%) SB crystallized at higher temperatures and lower melt-water contents (0–1.3 wt%) compared to high-MgO arc basalts (≤5.7 wt% H2O) erupted in the west-central Mexican arc. The Sangangüey lavas with 5–8 wt% MgO display evidence of mixing between high-MgO alkali olivine basalts and low-MgO mugearites. It is proposed that the unique composition of the mugearites (i.e., low SiO2 contents and elevated FeO and TiO2 contents) is the result of partial melting of mafic lower crust driven by the influx of high-MgO intraplate basalts under relatively hot, dry, and reduced conditions. On the basis of crystal textures and compositional zoning patterns, it is shown that both phenocryst growth and magma mixing occurred rapidly, most likely during ascent along fractures, and not slowly during prolonged storage in a crustal magma chamber.
Publisher
Geological Society of America
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献