Two magma fractionation paths for continental crust growth: Insights from the adakite-like and normal-arc granites in the Ailaoshan fold belt (SW Yunnan, China)

Author:

Xu Jian123,Xia Xiao-Ping123ORCID,Wang Qiang123,Spencer Christopher J.4,Lai Chun-Kit5,Zhang Le123

Affiliation:

1. 1State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

2. 2Chinese Academy of Sciences Center for Excellence in Deep Earth Science, Guangzhou 510640, China

3. 3Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China

4. 4Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada

5. 5Faculty of Science, Universiti Brunei Darussalam, Gadong BE141O, Brunei Darussalam

Abstract

Abstract Geochemical similarities between the continental crust and arc magmas have led to the inference that subduction zones may be the primary sites of crustal growth. Thus, it is necessary to unravel the petrogenetic mechanism(s) of granitoid generation in subduction-related settings to understand crustal growth through magmatic differentiation processes. In this study, we focused on granitoid generation in oceanic-continental subduction zones. We analyzed the whole-rock geochemistry and Sr-Nd isotopes, together with zircon U-Pb-Hf-O isotopes, of the newly identified Middle Triassic granitoids in the Ailaoshan high-grade metamorphic complex (Yunnan, SW China). All the studied granite samples were characterized by large ion lithophile element (e.g., Rb, Sr, and Ba) enrichments and high field strength element (e.g., Nb, Ta, and Ti) depletions, similar to arc-type rocks. They also showed a range of whole-rock Sr-Nd, (87Sr/86Sr)i = 0.7020–0.7048, εNd(t) = +0.6 to +4.2, and zircon Hf-O, εHf(t) = +10.3 to +18.1, δ18Ozircon = 5.09‰–6.65‰, isotope compositions, which overlap with those of previously reported coeval (ca. 237–235 Ma) hornblende diorite and granodiorite, the formation of which was interpreted to have originated from a mantle wedge metasomatized by a sediment-derived melt. Furthermore, the fractionation trends of some of the granitic samples and diorite-granodiorite suite overlap. They can be divided into two geochemical groups: Group 1 has intermediate to high SiO2 (66.9–73.8 wt%) and K2O (3.40–5.42 wt%) and low MgO (0.19–1.09 wt%) contents and shows depletion in heavy rare earth elements (HREEs; e.g., Yb and Y), resulting in adakite-like high Sr/Y (61–183) and La/Yb (47–90) ratios. Group 1 shows positive SiO2 versus Sr/Y and La/Yb correlations and negative SiO2 versus HREE and Y correlations, implying fractionation of a garnet-bearing assemblage. The negative correlations between SiO2 and εNd(t) and Nb/La reveal a crustal assimilation trend. Group 2 has relatively high SiO2 (72.6–76.5 wt%) and low K2O (1.93–3.82 wt%) and MgO (0.05–0.83 wt%) contents and shows depletion in middle REEs (MREEs; e.g., Gd and Dy) with low Sr/Y (1–10) and La/Yb (4–11) ratios. Group 2 granites show negative Gd/Yb versus SiO2 correlation, which indicates significant fractionation of an amphibole-bearing assemblage. Our results suggest that both group 1 and 2 granites were formed in a subduction setting from a common mantle-derived parental dioritic magma, but they experienced two distinct fractionation processes. While group 1 granites were likely formed by crustal assimilation and high-pressure (lower-crustal) garnet-dominated fractionation, group 2 granites were generated through low-pressure (middle-/upper-crustal) amphibole-/plagioclase-dominated fractionation. We suggest that these two fractionation trends are critical to crustal growth and the development of a more fractionated (felsic) upper crust.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3