A semi-automated method for extracting channels and channel profiles from lidar-derived digital elevation models

Author:

Dong Pinliang12,Zhong Ruofei13,Xia Jisheng4,Tan Shucheng4

Affiliation:

1. Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, 105 West Third Ring North Road, Haidian District, Beijing 100048, China

2. Department of Geography and the Environment, University of North Texas, 1155 Union Circle, #305279, Denton, Texas 76201, USA

3. Key Laboratory of 3-Dimensional Information Acquisition and Application, Ministry of Education, Capital Normal University, Beijing 100048, China

4. School of Resource, Environment and Earth Sciences, Yunnan University, Kunming, Yunan 650500, China

Abstract

Abstract With the advent of digital elevation models (DEMs) and geographic information systems (GIS), several methods have been proposed to extract channels from raster DEMs. Light detection and ranging (lidar) can produce high-resolution DEMs and poses new challenges to existing methods for channel extraction. This paper introduces a semi-automated method for extracting stream channels and channel profiles from high-resolution DEMs using image processing techniques. Based on user-specified approximate locations of start and end points and a few simple parameters, the method implements five automated steps: (1) channel detection using a local minimum value search; (2) channel delineation using Bresenham’s line algorithm and mathematical morphological operation; (3) vectorization; (4) profile generation; and (5) accuracy assessment. The method is implemented as an ArcGIS Python add-in toolbar named Channel Extraction. The application of the toolbar is demonstrated using a lidar-derived DEM in a study area along the San Andreas fault in California, USA. The software and test data are freely available for download (see Supplemental Files1). The demonstrated samples suggest that this new semi-automated method for extracting channels and channel profiles is flexible and user-friendly and can produce accurate results to support geomorphic studies.

Publisher

Geological Society of America

Subject

Stratigraphy,Geology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3