A bigger splat: The catastrophic geology of a 1.2-b.y.-old terrestrial megaclast, northwest Scotland

Author:

Killingback Z.1,Holdsworth R.E.1,Walker R.J.2,Nielsen S.1,Dempsey E.3,Hardman K.13

Affiliation:

1. Department of Earth Sciences, Durham University, Durham DH1 3LE, UK

2. School of Geography, Geology, and the Environment, University of Leicester, Leicester LE1 7RH, UK

3. Department of Geography, Environment and Earth Sciences, University of Hull, Hull HU6 7RX, UK

Abstract

Abstract Rockfalls are relatively little described from the ancient geological record, likely due to their poor preservation potential. At Clachtoll, northwest Scotland, a megaclast (100 m × 60 m × 15 m) of Neoarchean Lewisian gneiss with an estimated mass of 243 kt is associated with basal breccias of the Mesoproterozoic Stoer Group. Foliation in the megablock is misoriented by ∼90° about a subvertical axis relative to that in the underlying basement gneisses, and it is cut by fracture networks filled with Stoer Group red sandstone. Bedded clastic fissure fills on top of the megablock preserve way-up criteria consistent with passive deposition during burial. Sediment-filled fractures on the lateral flanks and base show characteristics consistent with forceful injection. Using numerical calculations, we propose that rift-related seismic shaking caused the megablock to fall no more than 15 m onto unconsolidated wet sediment. On impact, overpressure and liquefaction of the water-laden sands below the basement block were sufficient to cause hydrofracturing and upward sediment slurry injection. In addition, asymmetrically distributed structures record internal deformation of the megablock as it slowed and came to rest. The megablock is unrelated to the younger Stac Fada impact event, and represents one of the oldest known terrestrial rockfall features on Earth.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3