Landslide hypothesis for the origin of Haleakala volcano's crater and great valleys, Hawaii

Author:

Bishop Kim M.1

Affiliation:

1. Department of Environment and Geosciences, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, USA

Abstract

Abstract Active Haleakala volcano on the island of Maui is the second largest volcano in the Hawaiian Island chain. Prominently incised in Haleakala's slopes are four large (great) valleys. Haleakala Crater, a prominent summit depression, formed by coalescence of two of the great valleys. The great valleys and summit crater have long been attributed solely to fluvial erosion, but two significant enigmas exist in the theory. First, the great valleys of upper Keanae/Koolau Gap, Haleakala Crater, and Kaupo Gap are located in areas of relatively low annual rainfall. Second, the axes of some valley segments are oblique for long distances across the volcanic slopes. This study tested the prevailing erosional theory by reconstructing the volcano's topography just prior to valley incision. The reconstruction produces a belt along the volcano's east rift zone with a morphology that is inconsistent with volcanic aggradation alone, but it is readily explained if it is assumed the surface was displaced along scarps formed by a giant landslide on Haleakala's northeastern flank. Although the landslide head location is well defined, topographic evidence is lacking for the toe and lateral margins. Consequently, the slope failure is interpreted as a sackung-style landslide with a zone of deep-seated distributed shear and broad surface warping downslope of the failure head. Maximum downslope displacement was likely in the range of 400–800 m. Capture of runoff at the headscarps formed atypically large streams that carved Haleakala's great valleys and explains their existence in low-rainfall areas and their slope-oblique orientations. Sackung-style landslides may be more prevalent on Hawaiian volcanoes than previously recognized.

Publisher

Geological Society of America

Subject

Stratigraphy,Geology

Reference34 articles.

1. Landslide interpretation of the northeast flank of Kohala volcano;Bishop;Hawaii: Environmental & Engineering Geoscience,2017

2. The proximal part of the giant submarine Wailau landslide, Molokai, Hawaii;Clague;Journal of Volcanology and Geothermal Research,2002

3. Growth and degradation of Hawaiian volcanoes;Clague,2014

4. Large bedrock slope failures in a British Columbia, Canada, fjord: First documented submarine sackungen;Conway;Geo-Marine Letters,2018

5. Characteristics of Volcanoes;Dana,1890

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3