Enhanced landslide mobility by basal liquefaction: The 2014 State Route 530 (Oso), Washington, landslide

Author:

Collins Brian D.1,Reid Mark E.1

Affiliation:

1. Landslide Hazards Program, U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025, USA

Abstract

AbstractLandslide mobility can vastly amplify the consequences of slope failure. As a compelling example, the 22 March 2014 landslide near Oso, Washington (USA), was particularly devastating, traveling across a 1-km+-wide river valley, killing 43 people, destroying dozens of homes, and temporarily closing a well-traveled highway. To resolve causes for the landslide’s behavior and mobility, we conducted detailed postevent field investigations and material testing. Geologic and structure mapping revealed a progression of geomorphological structures ranging from debris-flow lobes at the distal end through hummock fields, laterally continuous landslide blocks, back-rotated blocks, and finally colluvial slides and falls at the landslide headscarp. Primary structures, as well as stratigraphic and vegetation patterns, in the landslide deposit indicated rapid extensional motion of the approximately 9 × 106 m3 source volume in a closely timed sequence of events. We identified hundreds of transient sand boils in the landslide runout zone, representing evidence of widespread elevated pore-water pressures with consequent shear-strength reduction at the base of the slide. During the event, underlying wet alluvium liquefied and allowed quasi-intact slide hummocks to extend and translate long distances across the flat valley. Most of the slide material itself did not liquefy. Using geotechnical testing and numerical modeling, we examined rapid undrained loading, shear and collapse of loose saturated alluvium, and strong ground shaking as potential liquefaction mechanisms. Our analyses show that some layers in the alluvium can liquefy when sheared, as could occur with rapid undrained loading. Simultaneous ground shaking could have contributed to pore-pressure generation as well. Two key elements, a large and rapid failure overriding wet liquefiable sediments, enabled the landslide’s high mobility. Basal liquefaction may enhance mobility of other landslides in similar settings.

Publisher

Geological Society of America

Subject

Geology

Reference133 articles.

1. Oso, Washington, landslide of March 22, 2014: Dynamic analysis;Aaron;Journal of Geotechnical and Geoenvironmental Engineering,2017

2. Closure to “Oso, Washington, landslide of March 22, 2014: Dynamic analysis” by Jordan Aaron, Oldrich Hungr, Timothy D. Stark, and Ahmed K. Baghdady;Aaron;Journal of Geotechnical and Geoenvironmental Engineering,2018

3. Rockslide movement supported by the mobilization of groundwater-saturated valley floor sediments;Abele;Zeitschrift für Geomorphologie,1997

4. Landslide hazard assessment: Summary review and new perspectives;Aleotti;Bulletin of Engineering Geology and the Environment,1999

5. Seismology of the Oso-Steelhead landslide [Discussion];Allstadt;Natural Hazards and Earth System Sciences,2015

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3