Coarse sediment dynamics in a large glaciated river system: Holocene history and storage dynamics dictate contemporary climate sensitivity

Author:

Anderson Scott W.1ORCID,Jaeger Kristin L.1

Affiliation:

1. U.S. Geological Survey, Washington Water Science Center, Tacoma, Washington 98402, USA

Abstract

Abstract The gravel-bedded White River drains a 1279 km2 basin in Washington State, with lowlands sculpted by continental glaciation and headwaters on an actively glaciated stratovolcano. Chronic aggradation along an alluvial fan near the river’s mouth has progressively reduced flood conveyance. In order to better understand how forecasted climate change may influence coarse sediment delivery and aggradation rates in this lowland depositional setting, we assessed the contemporary delivery and routing of coarse sediment through the watershed; this assessment was based on a rich set of topographic, sedimentologic, and hydrologic data from the past century, with a focus on repeat high-resolution topographic surveys from the past decade. We found that most of the lower river’s contemporary bed-load flux originates from persistent erosion of alluvial deposits in the lower watershed. This erosion is a response to a drop in local base level caused by a major avulsion across the fan in 1906 and then augmented by subsequent dredging. The 1906 avulsion and modern disequilibrium valley profiles reflect landscape conditioning by continental glaciation and a massive mid-Holocene lahar. In the proglacial headwaters, infrequent large sediment pulses have accomplished most of the observed coarse sediment export, with exported material blanketing downstream valley floors; during typical floods, transported bed material is largely sourced from erosion of these valley floor floods. Throughout the watershed, we observe decadal-scale coarse sediment dynamics strongly related to the filling or emptying of valley-scale sediment storage over 102–104 yr time scales, often in response to major disturbances that either emplace large deposits or influence their redistribution. Paraglacial responses in large watersheds are suggested to be inherently complicated and punctuated as a result of internal landform interactions and stochastic/threshold-dependent events. We argue that, in combination, Holocene disturbance, storage dynamics, and human flow modification make coarse sediment fluxes in the lower White River relatively insensitive to decadal climate variability. Results highlight the degree to which river sensitivity to contemporary disturbance, climatic or otherwise, may be contingent on local and idiosyncratic watershed histories, underscoring the need to unpack those histories while demonstrating the utility of watershed-scale high-resolution topography toward that end.

Publisher

Geological Society of America

Subject

Geology

Reference127 articles.

1. Uncertainty in quantitative analyses of topographic change: Error propagation and the role of thresholding;Anderson;Earth Surface Processes and Landforms,2019

2. Supporting Data for Sediment Studies in the White River Watershed: U.S;Anderson,2019

3. Downstream-propagating channel responses to decadal-scale climate variability in a glaciated river basin;Anderson;Journal of Geophysical Research–Earth Surface,2019

4. Using repeat LiDAR to estimate sediment transport in a steep stream;Anderson;Journal of Geophysical Research–Earth Surface,2014

5. Geomorphic Response of the North Fork Stillaguamish River to the State Route 530 Landslide near Oso, Washington: U.S;Anderson;Geological Survey Scientific Investigations Report 2017–,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3