Extreme metamorphism and metamorphic facies series at convergent plate boundaries: Implications for supercontinent dynamics

Author:

Zheng Yong-Fei12ORCID,Chen Ren-Xu12

Affiliation:

1. Chinese Academy of Sciences (CAS) Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

2. Center of Excellence for Comparative Planetology, Chinese Academy of Sciences (CAS), Hefei 230026, China

Abstract

Abstract Crustal metamorphism under extreme pressure-temperature conditions produces characteristic ultrahigh-pressure (UHP) and ultrahigh-temperature (UHT) mineral assemblages at convergent plate boundaries. The formation and evolution of these assemblages have important implications, not only for the generation and differentiation of continental crust through the operation of plate tectonics, but also for mountain building along both converging and converged plate boundaries. In principle, extreme metamorphic products can be linked to their lower-grade counterparts in the same metamorphic facies series. They range from UHP through high-pressure (HP) eclogite facies to blueschist facies at low thermal gradients and from UHT through high-temperature (HT) granulite facies to amphibolite facies at high thermal gradients. The former is produced by low-temperature/pressure (T/P) Alpine-type metamorphism during compressional heating in active subduction zones, whereas the latter is generated by high-T/P Buchan-type metamorphism during extensional heating in rifting zones. The thermal gradient of crustal metamorphism at convergent plate boundaries changes in both time and space, with low-T/P ratios in the compressional regime during subduction but high-T/P ratios in the extensional regime during rifting. In particular, bimodal metamorphism, one colder and the other hotter, would develop one after the other at convergent plate boundaries. The first is caused by lithospheric subduction at lower thermal gradients and thus proceeds in the compressional stage of convergent plate boundaries; the second is caused by lithospheric rifting at higher thermal gradients and thus proceeds in the extensional stage of convergent plate boundaries. In this regard, bimodal metamorphism is primarily dictated by changes in both the thermal state and the dynamic regime along plate boundaries. As a consequence, supercontinent assembly is associated with compressional metamorphism during continental collision, whereas supercontinent breakup is associated with extensional metamorphism during active rifting. Nevertheless, aborted rifts are common at convergent plate boundaries, indicating thinning of the previously thickened lithosphere during the attempted breakup of supercontinents in the history of Earth. Therefore, extreme metamorphism has great bearing not only on reworking of accretionary and collisional orogens for mountain building in continental interiors, but also on supercontinent dynamics in the Wilson cycle.

Publisher

Geological Society of America

Subject

Stratigraphy,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3