Differential crustal rotation and its control on giant ore clusters along the eastern margin of Tibet

Author:

Deng Jun1,Wang Qingfei1,Gao Liang1,He Wenyan1,Yang Zhenyu2,Zhang Shihong1,Chang Lijun3,Li Gongjian1,Sun Xiang1,Zhou Daoqing1

Affiliation:

1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China

2. College of Resources, Environment and Tourism, Capital Normal University, Beijing 100048, China

3. China Earthquake Administration, Beijing 100081, China

Abstract

Abstract Controls on the formation and distribution of mineralization in continental collisional settings remain unclear. However, our synthesis of diverse geophysical data sets from the eastern margin of Tibet revealed that differential crustal rotation played a key role in the production of a variety of mineralization types. Due to Cenozoic continental collision between India and Eurasia, the elongated continental blocks in the eastern margin of Tibet were extruded and reoriented. Prior to block extrusion in the Eocene, two giant porphyry-skarn ore clusters formed at the boundaries between the central segment and both the northern and southern segments of the Jinshajiang-Ailaoshan suture zone. These crustal segment boundaries displayed counterclockwise rotation, due to clockwise rotation of the central segment relative to both the essentially immobile northern and southern segments, combined with crust-mantle decoupling. This is considered to have induced crustal friction and resultant generation of fertile magmas that formed the porphyry-skarn Cu-Au deposits. During Oligocene–Miocene block extrusion, differential rotation of upper crust occurred on the western and eastern sides of the north-northwest–trending Central Axis fault in the Lanping-Simao basin. Two Oligocene–Miocene Mississippi Valley–type ore clusters occur on fault segments with anomalous differential rotation of 70° to 80°, suggesting that this differential rotation resulted in local extension with consequent ore-fluid influx.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3