Lithologic, geomorphic, and permafrost controls on recent landsliding in the Alaska Range

Author:

Patton A.I.1ORCID,Rathburn S.R.1,Capps D.2,Brown R.A.3,Singleton J.S.1

Affiliation:

1. Department of Geosciences, Colorado State University, 1482 Campus Delivery, Fort Collins, Colorado 80523, USA

2. Denali National Park and Preserve, Mile 237, Highway 3, Denali Park, Alaska 99755, USA

3. River Design Group, 311 SW Jefferson Avenue, Corvallis, Oregon 97333, USA

Abstract

Abstract Because landslide regimes are likely to change in response to climate change in upcoming decades, the need for mechanistic understanding of landslide initiation and up-to-date landslide inventory data is greater than ever. We conducted surficial geologic mapping and compiled a comprehensive landslide inventory of the Denali National Park road corridor to identify geologic and geomorphic controls on landslide initiation in the Alaska Range. The supplemental geologic map refines and improves the resolution of mapping in the study area and adds emphasis on surficial units, distinguishing multiple glacial deposits, hillslope deposits, landslides, and alluvial units that were previously grouped. Results indicate that slope angle, lithology, and thawing ice-rich permafrost exert first-order controls on landslide occurrence. The majority (84%) of inventoried landslides are <0.01 km2 in area and occur most frequently on slopes with a bimodal distribution of slope angles with peaks at 18° and 28°. Of the 85 mapped landslides, a disproportionate number occurred in unconsolidated sediments and in felsic volcanic rocks. Weathering of feldspar within volcanic rocks and subsequent interactions with groundwater produced clay minerals that promote landslide initiation by impeding subsurface conductivity and reducing shear strength. Landslides also preferentially initiated within permafrost, where modeled mean decadal ground temperature is −0.2 ± 0.04 °C on average, and active layer thickness is ∼1 m. Landslides that initiated within permafrost occurred on slope angles ∼7° lower than landslides on seasonally thawed hillslopes. The bimodal distribution of slope angles indicates that there are two primary drivers of landslide failure within discontinuous permafrost zones: (1) atmospheric events (snowmelt or rainfall) that saturate the subsurface, as is commonly observed in temperate settings, and (2) shallow-angle landslides (<20° slopes) in permafrost demonstrate that permafrost and ice thaw are also important triggering mechanisms in the study region. Melting permafrost reduces substrate shear strength by lowering cohesion and friction along ice boundaries. Increased permafrost degradation associated with climate change brings heightened focus to low-angle slopes regionally as well as in high-latitude areas worldwide. Areas normally considered of low landslide potential will be more susceptible to shallow-angle landslides in the future. Our landslide inventory and analyses also suggest that landslides throughout the Alaska Range and similar climatic zones are most likely to occur where low-cohesion unconsolidated material is available or where alteration of volcanic rocks produces sufficient clay content to reduce rock and/or sediment strength. Permafrost thaw is likely to exacerbate slope instability in these materials and expand areas impacted by landslides.

Publisher

Geological Society of America

Subject

Stratigraphy,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3