Deformation-induced Japan twinning in quartz during incipient mylonitization

Author:

Bestmann Michel1,Pennacchioni Giorgio2,Grasemann Bernhard3

Affiliation:

1. GeoZentrum Nordbayern, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany

2. Department of Geosciences, University of Padova, 35131 Padua, Italy

3. Department of Geology, University of Vienna, 1090 Vienna, Austria

Abstract

Abstract Many crystalline rocks of the continental crust contain coarse-grained quartz as a main mineral (e.g., granitoids). Incipient deformation of coarse quartz, which likely controls the accumulation of bulk strain in heterogeneously deformed crustal rock volumes, commonly develops microshear zones (MSZs) of localized recrystallization. At mid-crustal conditions, where quartz deformation is mostly accomplished by subgrain rotation recrystallization, grains of MSZs can show an abrupt change in crystallographic orientation (large misorientation angle) with respect to the host quartz that is still not fully understood. We analyzed MSZs (20–200 µm thick) from deformed coarse-grained (millimeter grain size) quartz veins in the Austroalpine Schobergruppe (Eastern Alps). Electron backscatter diffraction analysis reveals that the MSZs are characterized by a nearly 90° misorientation angle between the c-axes of the host and new grains, which also share one {m} and one {1122} pole, compatible with Japan twinning. This abrupt switch of the c-axis orientation can promote geometrical softening and shear localization. So far, Japan twinning has been interpreted as a growth feature. We show that deformation-induced twinning in quartz, including Japan and Dauphiné twinning, can play an important role in initiation of crystal-plastic deformation within the crust.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3