Early Holocene weakening and mid- to late Holocene strengthening of the East Asian winter monsoon

Author:

Kang Shugang123,Du Jinhua4,Wang Ning5,Dong Jibao12,Wang Duo1,Wang Xulong123,Qiang Xiaoke12,Song Yougui12

Affiliation:

1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China

2. Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi’an 710061, China

3. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China

4. School of Earth Science and Resources, Chang’an University, Xi’an 710054, China

5. Research Institute of Shaanxi Yanchang Petroleum (Group) Co., Ltd., Xi’an 710075, China

Abstract

AbstractSub-orbital-scale variations of the East Asian winter monsoon (EAWM) and its mechanisms during the Holocene are controversial, partly due to the lack of high-quality records from Chinese loess. Here, we present high-resolution reconstruction of Holocene EAWM intensity based on optically stimulated luminescence dating and grain-size analysis from three loess sections taken from the Chinese Loess Plateau. The EAWM showed a persistent weakening trend during the early Holocene (ca. 11.7–6.5 kyr B.P.) and a strengthening trend during the mid- to late Holocene (since ca. 6.5 kyr B.P.). We propose that this was caused by changes in high-latitude Northern Hemisphere ice volume and middle- to high-latitude Northern Hemisphere atmospheric temperatures, respectively. We also observed an anti-correlation between EAWM and East Asian summer monsoon. Our findings provide a robust solution to the debate regarding Holocene EAWM changes and contribute to the understanding of potential future variations in EAWM intensity.

Publisher

Geological Society of America

Subject

Geology

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3