Comparative morphometric analysis suggests ice-cored pingo-shaped landforms on the dwarf planet Ceres

Author:

Hughson Kynan H.G.1,Schmidt Britney E.2,Udell Lopez Kathrine T.3,Sizemore Hanna G.4,Schenk Paul M.5,Scully Jennifer E.C.6,Raymond Carol A.6,Russell Christopher T.7

Affiliation:

1. Department of Geological Sciences, University of Alaska Anchorage, Anchorage, Alaska 99508, USA

2. Departments of Astronomy & Earth and Atmospheric Sciences, Cornell University, Ithaca, New York 14853, USA

3. Department of Geology, University of Maryland, College Park, Maryland 20742, USA

4. Planetary Science Institute, Tucson, Arizona 85719, USA

5. Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas 77058, USA

6. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA

7. Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California 90095, USA

Abstract

Abstract The NASA Dawn mission revealed that the floor of Occator crater on the dwarf planet Ceres (in the main asteroid belt between Mars and Jupiter) is populated with small quasi-conical hills. Many of these features exhibit morphometric properties that are like those of ice-cored periglacial hills called pingos. Alternatively, some of these Cerean hills have also been hypothesized to be cryovolcanic in origin. If these hills are analogous to pingos, they represent ice-rich environments that are attractive targets for future exploration. We report new constraints on the morphologies of the Occator hills that aid in determining their origin. We also directly test how morphologically similar the hills in Occator are to pingos and volcanic cones on Earth using comparative statistical analyses. Using a novel application of kernel density estimation and Markov chain Monte Carlo methods we show that the morphologies of terrestrial pingos and volcanic cones are quantifiably distinct, and that the Cerean hills share significant morphometric similarities with pingos on Earth. Our findings indicate that a statistical treatment of morphometry alone can be a powerful tool for classifying and comparing planetary surface features, and that the majority of the resolved Cerean hills are morphometrically more similar to pingos than to small terrestrial volcanic cones.

Publisher

Geological Society of America

Subject

Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3