Nanometer-scale pore structure and the Monterey Formation: A new tool to investigate silica diagenesis

Author:

Ross Cynthia M.1,Kovscek Anthony R.1

Affiliation:

1. Energy Resources Engineering, Stanford University, 367 Panama Street, Stanford, California 94305-4007, USA

Abstract

ABSTRACT The Monterey Formation and related formations in California have long been the subject of field and laboratory studies on silica diagenesis. Biogenic or amorphous silica (opal-A) alters to a more-ordered opal-CT and eventually to the crystalline end member, quartz, with increasing burial depth and temperature. Low-pressure nitrogen sorption serves as an indicator of silica alteration by detecting the nanometer-scale pore structures associated with opal-CT while excluding contributions from larger pores. To apply this method, calibrations with known compositions are not required, sample preparation and measurements are straightforward, hazardous waste is not generated (as with mercury porosimetry), and subtle changes in silica phase are readily detected. Nitrogen desorption isotherms, collected on mini cores (~0.8 cm diameter × 1 cm) after outgassing at 50 °C and processed using the Barrett-Joyner-Halenda method, provide nanometer-scale pore throat size distributions (nPSD), pore volumes (nPV), and surface areas (nSA). A scatter plot of nPV and nSA reveals two distinct trends. Samples with more nSA per unit volume contain opal-CT, either in transition from opal-A or completely converted. The other nSA trend consists of opal-A and quartz samples in the small nSA and nPV range, whereas samples with small nSA and large nPV also contain opal-CT and are in transition to quartz. These distinct trends are also apparent in the nPSD. Samples with more nSA exhibit a peak between 4 and 10 nm, whereas samples with less nSA have a broad peak between 10 and 100 nm if they contain opal-CT. Images collected via scanning electron microscopy reveal that opal-CT morphologies account for these differences.

Publisher

Geological Society of America

Reference57 articles.

1. The determination of pore volume and area distributions in porous substances: I. Computations from nitrogen isotherms;Barrett;Journal of the American Chemical Society,1951

2. Behl, R.J., 1992, Chertification in the Monterey Formation of California and Deep-Sea Sediments of the West Pacific [Ph.D. thesis]: Santa Cruz, California, University of California, 287 p.

3. Low-temperature opal-CT precipitation in Antarctic deep-sea sediments: Evidence from oxygen isotopes;Botz;Earth and Planetary Science Letters,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3