Does the Earth have a pulse? Evidence relating to a potential underlying ~26–36-million-year rhythm in interrelated geologic, biologic, and astrophysical events

Author:

Rampino* Michael R.1

Affiliation:

1. Departments of Biology and Environmental Studies, New York University, 24 Waverly Place, New York, New York 10003, USA

Abstract

ABSTRACT The existence of an ~26–36 m.y. rhythm in interrelated global tectonism, sea-level oscillations, climate, and resulting sedimentation patterns during Phanerozoic time (the last 541 m.y.) has long been suspected. A similar underlying ~26.4–27.5 m.y. cycle was reported independently in episodes of extinctions of marine and non-marine species. Subsequent spectral analyses of individual geologic events of the last 260 m.y., including changes in seafloor spreading and subduction, times of hotspot initiation and intraplate volcanism, eruptions of Large Igneous Provinces (LIPs), tectonic events, sea-level fluctuations, oceanic anoxia, atmospheric carbon dioxide levels, and global climate have revealed evidence for the 26–36 m.y. cycle and the temporal association of events with an apparent overall periodicity of ~27.5 m.y. modulated by an ~8–9 m.y. cycle. The proposed episodes of geologic activity and environmental and biotic change may result from cyclical internal Earth processes that affect changes in mantle convection, plate motions, intraplate stresses, and/or periodic pulses of mantle-plume activity. Recently, the ~30 m.y. cycle has been linked to Earth’s long-term orbital changes within the Solar System, and it may also affect tectonism and climate. I also note considerable evidence for a similar ~30 m.y. cycle in the ages of terrestrial impact craters, which suggests possible astronomical connections. The shared geologic cycle time, formally ranging from ~26 to 36 m.y. (depending partly on varying data sets, geologic timescales, and statistical techniques utilized) is close to the estimated interval (~32 ± 3 m.y.) between our cyclical crossings of the crowded mid-plane region of the Milky Way Galaxy. Here I outline a proposed astrophysical pacing for the apparent pulses of both impact cratering and rhythmic geological episodes.

Publisher

Geological Society of America

Reference232 articles.

1. Volcanogenic dark matter and mass extinctions;Abbas;Astroparticle Physics,1998

2. Extraterrestrial influences on mantle plume activity;Abbott;Earth and Planetary Science Letters,2002

3. Major marine cycles in the Mesozoic;Ager;Journal of the Geological Society,1981

4. Extraterrestrial cause for the Cretaceous–Tertiary extinction;Alvarez;Science,1980

5. Toward a theory of impact crises;Alvarez;Eos (Transactions, American Geophysical Union),1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3