Tracking isotopic sources of immiscible melts at the enigmatic magnetite-(apatite) deposit at El Laco, Chile, using Pb isotopes

Author:

Pietruszka Dorota K.1,Hanchar John M.1,Tornos Fernando12,Whitehouse Martin J.3,Velasco Francisco4

Affiliation:

1. 1Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X5, Canada

2. 2Instituto de Geociencias (CSIC-UCM) − Severo Ochoa 7, 28040 Madrid, Spain

3. 3Department of Geosciences, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden

4. 4Departamento de Mineralogía y Petrología, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain

Abstract

The long-standing controversy about the origin of magnetite-(apatite) mineral deposits pertains to how they form. The Pleistocene El Laco deposit in northern Chile is a critical location because the host andesite contains immiscible melt inclusions trapped in plagioclase and clinopyroxene phenocrysts that reveal the involvement of immiscible melts in the evolution of the El Laco Volcanic System hosting the magnetite-(apatite) mineralization. We present results from the first-ever whole-rock and in situ Pb isotope investigation at El Laco, which provides a better understanding of the relationships between immiscible melts preserved in the melt inclusions, the magnetite ore, and the host andesite, and helps identify sources of the ore metals by analyzing potential sources of crustal lead. Our study reveals that the phenocrysts and the melt inclusions contain homogenous Pb isotope compositions that overlap with the host andesite, which confirms that they are coeval and cogenetic. The magnetite ore, however, has significantly more primitive 206Pb/204Pb ratios, which points to Pb isotopic disequilibrium between the magnetite ore and host andesite. Model ages of 367−167 Ma for the magnetite ore suggest that the Pb was inherited from a U−Th-depleted reservoir that could be represented by sedimentary rocks found in the basement of the Andean Cordillera under El Laco, for example, the Palaeozoic P-rich ironstones sequence. These results are consistent with the major role of crustal contamination in the formation of magnetite-(apatite) mineralization elsewhere and suggest that the magnetite ore crystallized from immiscible Fe-rich melts contaminated by the underlying sedimentary sequences.

Publisher

Geological Society of America

Subject

Geology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3