Carbon isotope excursions during the late Miocene recorded by lipids of marine Thaumarchaeota, Piedmont Basin, Mediterranean Sea

Author:

Sabino Mathia1,Birgel Daniel1,Natalicchio Marcello2,Pierre Francesco Dela2,Peckmann Jörn1

Affiliation:

1. Institut für Geologie, Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, D-20146 Hamburg, Germany

2. Dipartimento di Scienze della Terra, Università di Torino, I-10125 Torino, Italy

Abstract

Abstract Group I mesophilic Thaumarchaeota fix dissolved inorganic carbon (DIC), accompanied by a biosynthetic fractionation factor of ~20‰. Accordingly, the δ13C signature of their diagnostic biomarker crenarchaeol was suggested as a potential δ13CDIC proxy in marine basins if input from nonmarine Thaumarchaeota is negligible. Semi-enclosed basins are sensitive to carbon-cycle perturbations, because they tend to develop thermohaline stratification. Water column stratification typified the semi-enclosed basins of the Mediterranean Sea during the late Miocene (Messinian) salinity crisis (5.97–5.33 Ma). To assess how the advent of the crisis affected the carbon cycle, we studied sediments of the Piedmont Basin (northwestern Italy), the northernmost Mediterranean subbasin. A potential bias of our δ13CDIC reconstructions from the input of soil Thaumarchaeota is discarded, since high and increasing branched and isoprenoid tetraether (BIT) index values do not correspond to low and decreasing δ13C values for thaumarchaeal lipids, which would be expected in case of high input from soil Thaumarchaeota. Before the onset of the crisis, the permanently stratified distal part of the basin hosted a water mass below the chemocline with a δ13CDIC value of approximately −3.5‰, while the well-mixed proximal part had a δ13CDIC value of approximately −0.8‰. The advent of the crisis was marked by 13C enrichment of the DIC pool, with positive δ13CDIC excursions up to +5‰ in the upper water column. Export of 12C to the seafloor after phytoplankton blooms and limited replenishment of remineralized carbon due to the stabilization of thermohaline stratification primarily caused such 13C enrichment of the DIC pool.

Publisher

Geological Society of America

Subject

Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3