Water transfer to the deep mantle through hydrous, Al-rich silicates in subduction zones

Author:

Hermann Jörg12,Lakey Shayne2

Affiliation:

1. Institute of Geological Sciences, University of Bern, Baltzerstrasse 3, 3012 Bern, Switzerland

2. Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia

Abstract

Constraining deep-water recycling along subduction zones is a first-order problem to understand how Earth has maintained a hydrosphere over billions of years that created conditions for a habitable planet. The pressure-temperature stability of hydrous phases in conjunction with slab geotherms determines how much H2O leaves the slab or is transported to the deep mantle. Chlorite-rich, metasomatic rocks that form at the slab-mantle interface at 50–100 km depth represent an unaccounted, H2O-rich reservoir in subduction processes. Through a series of high-pressure experiments, we investigated the fate of such chlorite-rich rocks at the most critical conditions for subduction water recycling (5–6.2 GPa, 620–800 °C) using two different natural ultramafic compositions. Up to 5.7 GPa, 740 °C, chlorite breaks down to an anhydrous peridotite assemblage, and H2O is released. However, at higher pressures and lower temperatures, a hydrous Al-rich silicate (11.5 Å phase) is an important carrier to enable water transfer to the deep mantle for cold subduction zones. Based on the new phase diagrams, it is suggested that the deep-water cycle might not be in secular equilibrium.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3