Early Cretaceous (late Barremian−Early Albian) expanding aeolian activity in East Asia: Evidence from the stratigraphic evolution of aeolian deposition in the Baiyin-Jingyuan Basin, northern China

Author:

Wang Fei1,Li Zaijun1,Sun Xiaoyun1,Zhao Jie2,Fan Yuxin13,Xia Dunsheng1,Ayyamperumal Ramamoorthy13,Li Baofeng4

Affiliation:

1. 1Key Laboratory of Western China’s Environmental Systems (Ministry of Education) and College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China

2. 2Key Laboratory of Western Mineral Resources and Geological Engineering, MOE, School of Earth Science and Resources, Chang’an University, Xi’an 710054, China

3. 3Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, Lanzhou 730000, China

4. 4Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

Abstract

Cretaceous aeolian deposition is important for understanding variations of the tropical−subtropical atmospheric circulation under the greenhouse background. Nevertheless, detailed records revealing the response of aeolian deposition to rising atmospheric CO2 are still lacking. To shed light on their linkage, we examined the Early Cretaceous stratigraphic evolution of the Hekou Group in the Baiyin-Jingyuan Basin, northern China, using multiple methods. The results indicate that the lower Hekou Group is characterized by a transition from submerged alluvial to shallow lacustrine deposition. Overlying these facies is loess-like deposition without bedding, distinguished by grain-size distribution, surface microtextures, and geochemical analysis, which is followed by palustrine deposition. In the palustrine deposition, aeolian sand-dune and sand-sheet deposition can be identified, which gradually developed upward in the Hekou Group, with intercalated wet interdunes, damp interdunes, and pebble-sand sheetflood beds. Finally, aeolian sand dunes and sand sheets dominated the upper Hekou Group. Overall, the upward-changing facies indicated the development of aeolian deposition from an aqueous environment, revealing a long-term paleoclimatic shift from semi-humid, semi-arid to extremely arid, which reflects the expanded aeolian activity in East Asia during the Early Cretaceous. Furthermore, various records were combined to investigate the expanding aeolian activity in East Asia, which indicates a west−east-trending arid belt that was wider than the modern counterpart during the late Barremian−Early Aptian and late Aptian−Early Albian, respectively. These stepwise expansions of aeolian activity were mainly driven by rising atmospheric CO2, which strengthened the subsiding branches of Hadley circulation and the subtropical high, eventually leading to intensified aridification.

Publisher

Geological Society of America

Subject

Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A westerly dominated Early Cretaceous eolian system in the Hami Basin, NW China;Geological Society of America Bulletin;2024-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3