Geochemical signature of a deeply subducted slab in the source of post-collisional magmatism: A case study from the Western Tianshan NW China

Author:

Li Ning-Bo12,Niu He-Cai12,Shan Qiang12,Yang Wu-Bin12

Affiliation:

1. 1Chinese Academy of Sciences Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences; Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640, China

2. 2Chinese Academy of Sciences Center for Excellence in Deep Earth Science, Guangzhou 510640, China

Abstract

The contributions of deeply subducted slabs to post-collisional magmatism are poorly constrained. Here, we present a study of the post-collisional, Early Permian (ca. 279 Ma), Hamisite basalts from the Western Tianshan NW China to trace the geochemical fingerprints of deeply subducted slab. The Hamisite basalts have arc-like trace element patterns but high Nb/Ta ratios (18.4−23.0). They have slightly enriched Sr−Nd isotopic compositions (87Sr/86Sr = 0.7048−0.7052; εNd[t] = 2.02−3.85), which indicates that the basalts were derived from an enriched mantle source. Extremely low δ7Li values (−5.76‰ to 0.20‰) imply the involvement of a deeply subducted slab (i.e., eclogites) in the source. Correlations among Nb/Ta and (Dy/Yb)N ratios, and rare earth element contents, indicate that the deeply subducted slab contained residual rutile and garnet but no epidote. Given that melting of eclogites requires an anomalously hot mantle source, we propose that mantle upwelling during post-collisional extension triggered melting of the deeply subducted slab. Our results indicate that melting of a deeply subducted slab can generate a metasomatized mantle source with high Nb/Ta ratios, which could be a hidden, high-Nb/Ta reservoir on Earth. Low δ7Li values and high Nb/Ta ratios could be a fingerprint of recycling of a deeply subducted slab.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3