Carbon-rich polyphasic inclusions in postcollisional mafic magmatic rocks from the Dabie Shan, China: Implications for the carbon cycle in continental subduction zones

Author:

Tan Dong-Bo1,Xiao Yilin12,Wang Yang-Yang1,Jin Deshi1,Gu Hai-Ou3,Sun He3,Jiang Lingling1

Affiliation:

1. 1Chinese Academy of Sciences Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

2. 2Chinese Academy of Sciences Center of Excellence in Comparative Planetology, Hefei 230026, China

3. 3School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China

Abstract

Subduction is a fundamental geodynamic process that transfers carbon from Earth’s surface into the mantle. However, current understanding of the migration mechanisms, final storage region, and species involved in carbon recycling from continental crust remains limited. Here, we investigated the compositions of polyphasic inclusions and Mg isotopes in postcollisional mafic magmatic rocks from the Dabie Shan region of China. The main rock-forming minerals contained two distinct types of polyphasic inclusions, which displayed systematic differences in daughter mineral/gaseous phase assemblages, including host-like silicates ± carbonates (magnesite, dolomite, and calcite) + CH4 and carbonates + talc ± SiO2 (aqueous) + CH4, respectively. These inclusions indicate that carbon-rich silicate melts and carbon-rich magmatic fluids were trapped by host minerals during magmatic processes. The abundant carbonates and CH4 in both types of inclusions suggest that the mantle source of these postcollisional mafic magmatic rocks was rich in carbon, most likely existing in the forms of CO2 and CH4. Moreover, the studied postcollisional mafic magmatic rocks have mantle-like Mg isotope compositions, with δ26Mg values ranging from −0.23‰ to −0.16‰. The combined observations of polyphase inclusions and Mg isotopes indicate that a substantial carbon-rich mantle domain arose from the metasomatism of silicate melts derived from subducted continental slabs that had dissolved a certain quantity of CO2 and CH4. We proposed that continental subduction is an efficient pathway for transporting crustal carbon into an orogenic subcontinental lithospheric mantle wedge, where the recycled carbon can be stored for >100 m.y. and eventually released to the surface during postcollisional magmatism.

Publisher

Geological Society of America

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3