Deformation and metasomatism recorded by single-grain apatite petrochronology

Author:

Odlum Margaret L.1,Levy Drew A.2,Stockli Daniel F.3,Stockli Lisa D.3,DesOrmeau Joel W.2

Affiliation:

1. Department of Geoscience, University of Nevada, Las Vegas, Nevada 89154, USA

2. Department of Geological Sciences & Engineering, University of Nevada, Reno, Nevada 89557, USA

3. Department of Geological Sciences, University of Texas at Austin, Austin, Texas 78712, USA

Abstract

Abstract The timing and processes of ductile deformation and metasomatism can be documented using apatite petrochronology. We integrated microstructural, U-Pb, and geochemical analyses of apatite grains from an exhumed mylonitic shear zone in the St. Barthélémy Massif, Pyrenees, France, to understand how deformation and metasomatism are recorded by U-Pb dates and geochemical patterns. Electron backscatter diffraction (EBSD) analyses documents crystal plastic deformation characterized by low-angle boundaries (<5°) associated with dislocation creep and evidence of multiple slip systems. Laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) U-Pb maps indicate that dates in deformed grains reflect, and are governed by, low-angle dislocation boundaries. Apatite rare earth element (REE) and U-Pb behavior is decoupled in high-grade gneiss samples, suggesting REEs record higher-temperature processes than U-Pb isotopic systems. Apatite from (ultra)mylonitic portions of the shear zone showed evidence of metasomatism, and the youngest dates constrain the age of metasomatism. Collectively, these results demonstrate that crystal plastic microstructures and fluid interactions can markedly change apatite isotopic signatures, making single-grain apatite petrochronology a powerful tool for dating and characterizing the latest major deformation and/or fluid events, which are often not captured by higher-temperature chronometers.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3