Fluid compositions reveal fluid nature, metal deposition mechanisms, and mineralization potential: An example at the Haobugao Zn-Pb skarn, China

Author:

Shu Qihai12,Chang Zhaoshan23,Mavrogenes John4

Affiliation:

1. State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China

2. Economic Geology Research Centre, James Cook University, Townsville, Queensland 4811, Australia

3. Department of Geology and Geological Engineering, Colorado School of Mines, Golden, Colorado 80005, USA

4. Research School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia

Abstract

Abstract Fluid inclusion compositions obtained from laser ablation–inductively coupled plasma–mass spectrometry at the Haobugao Zn-Pb skarn in northeastern China provide constraints on fluid origin, evolution, and metal deposition mechanisms and an example of evaluating mineralization potential. Metal concentrations in the prograde fluids were high (up to 1.4 wt% Zn and 1.8 wt% Pb) but remained in solution, likely due to the high temperatures (440–575 °C) and salinities (35.4–45.3 wt% NaCl equivalent). Absolute concentrations of elements (e.g., Rb and Na) and mass ratios (e.g., Zn/Na and K/Na) reveal that the early, prograde fluids were magmatic, consistent with the oxygen isotope composition of fluids (δ18OH2O = 5.5‰–8.5‰). Later mixing with a meteoric fluid caused dilution and Zn-Pb deposition, as revealed by lowered element concentrations and Pb/(Na + K) and Zn/(Na + K) ratios in the sulfide-stage fluid inclusions. Elevated Ca/K ratios in sphalerite-hosted inclusions indicate fluid-carbonate reactions that buffered fluid pH, also facilitating Zn-Pb precipitation. Although cassiterite and molybdenite occur locally at Haobugao, mass balance calculation shows low metal endowment (maximum 2900 t Sn and 2200 t Mo) of the system. Furthermore, the generally unchanged Sn/(Na + K) and Mo/(Na + K) ratios from pre- to late-mineralization fluids suggest that the fluids were never saturated in Sn and Mo. Therefore, finding much Sn or Mo at Haobugao is unlikely. This demonstrates a potential tool for evaluating the metal endowment of a mineral prospect, which may guide exploration.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3