The remarkable volcanism of Shastina, a stratocone segment of Mount Shasta, California

Author:

Christiansen Robert L.1,Calvert Andrew T.1,Champion Duane E.1,Gardner Cynthia A.2,Fierstein Judith E.1,Vazquez Jorge A.1

Affiliation:

1. U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025, USA

2. U.S. Geological Survey, 1300 SE Cardinal Court, Vancouver, Washington 98683, USA

Abstract

Abstract Mount Shasta, a 400 km3 volcano in northern California (United States), is the most voluminous stratocone of the Cascade arc. Most Mount Shasta lavas vented at or near the present summit; relatively smaller volumes erupted from scattered vents on the volcano’s flanks. An apron of pyroclastic and debris flows surrounds it. Shastina, a large and distinct cone on the west side of Mount Shasta, represents a brief but exceptionally vigorous period of eruptive activity. Its volume of ∼13.5 km3 would make Shastina itself one of the larger Holocene Cascade stratovolcanoes. Its andesite-dacite lavas average 63 wt% SiO2 and have little compositional or petrographic variation; they erupted almost entirely from one central vent, although a single vent below Shastina’s north side erupted a flow of the same composition. Eruptions ended with explosive enlargement and breaching of the central crater and successive emplacement of four, more-silicic dacite domes within the crater and pyroclastic flows down its flank. Black Butte, a large volcanic dome and pyroclastic complex below the west flank of Shastina, is petrographically and chemically distinct but only slightly younger than Shastina itself, part of a nearly continuous Shastina–Black Butte eruptive episode. Shastina overlies the widespread pumice of Red Banks, erupted from the Mount Shasta summit area and 14C dated at ca. 10,900 yr B.P. (calibrated). Shastina and Black Butte pyroclastic deposits have calibrated 14C ages indistinguishable from one another at ca. 10,700 cal. yr B.P. A cognate granitic-textured inclusion in a late Shastina lava flow yields a 238U-230Th date on zircons within error of those ages. Our conclusion that the entire, voluminous Shastina–Black Butte episode lasted no more than a few hundred years is confirmed by almost identical remanent magnetic directions of all of the lavas and pyroclastic deposits. Although extremely similar, the remanent magnetic directions do reveal a short path of secular variation through the eruptive sequence. We conclude that the entire Shastina–Black Butte eruptive episode lasted no more than ∼200 yr. The magmas that produced the Shastina and Black Butte eruptions were separate individual bodies at different crustal levels. Each of these eruptive sequences probably represents magma approximating a liquid composition that experienced only minimal differentiation or crustal contamination and remained separated from the main central conduit for most eruptions of Mount Shasta. The probability of another rapidly developing, brief but voluminous eruptive episode at Mount Shasta is low but should not be ignored in evaluating future possible eruptive hazards.

Publisher

Geological Society of America

Subject

Stratigraphy,Geology

Reference28 articles.

1. Use and abuse of the terms calcalkaline and calcalkalic;Arculus;Journal of Petrology,2003

2. A three-dimensional view of Mt. Shasta, California, based on inversion of gravity anomalies;Blakely;Geological Society of America Abstracts with Programs,2000

3. Episodic growth of Mt. Shasta, CA, documented by argon chronology;Calvert,2011

4. Long-lived structural control of Mt. Shasta’s plumbing system illuminated by 40Ar/39Ar geochronology;Calvert,2013

5. Mixing of magmas from enriched and depleted mantle sources in the northeast Pacific: West Valley segment, Juan de Fuca Ridge;Cousens;Contributions to Mineralogy and Petrology,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3