Formation of the crater suevite sequence from the Chicxulub peak ring: A petrographic, geochemical, and sedimentological characterization

Author:

Kaskes Pim12,de Graaff Sietze J.12,Feignon Jean-Guillaume3,Déhais Thomas12,Goderis Steven1,Ferrière Ludovic4,Koeberl Christian3,Smit Jan5,Wittmann Axel6,Gulick Sean P.S.78,Debaille Vinciane2,Mattielli Nadine2,Claeys Philippe1

Affiliation:

1. Research Unit: Analytical, Environmental & Geo-Chemistry, Department of Chemistry, Vrije Universiteit Brussel, AMGC-WE-VUB, Pleinlaan 2, 1050 Brussels, Belgium

2. Laboratoire G-Time, Université Libre de Bruxelles, ULB, Av. F.D. Roosevelt 50, 1050 Brussels, Belgium

3. Department of Lithospheric Research, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria

4. Natural History Museum, Burgring 7, A-1010 Vienna, Austria

5. Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, Netherlands

6. Eyring Materials Center, Arizona State University, Tempe, Arizona 85287, USA

7. Institute for Geophysics & Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas 78758, USA

8. Center for Planetary Systems Habitability, University of Texas at Austin, Austin, Texas 78712, USA

Abstract

This study presents a new classification of a ∼100-m-thick crater suevite sequence in the recent International Ocean Discovery Program (IODP)-International Continental Scientific Drilling Program (ICDP) Expedition 364 Hole M0077A drill core to better understand the formation of suevite on top of the Chicxulub peak ring. We provide an extensive data set for this succession that consists of whole-rock major and trace element compositional data (n = 212) and petrographic data supported by digital image analysis. The suevite sequence is subdivided into three units that are distinct in their petrography, geochemistry, and sedimentology, from base to top: the ∼5.6-m-thick non-graded suevite unit, the ∼89-m-thick graded suevite unit, and the ∼3.5-m-thick bedded suevite unit. All of these suevite units have isolated Cretaceous planktic foraminifera within their clastic groundmass, which suggests that marine processes were responsible for the deposition of the entire M0077A suevite sequence. The most likely scenario describes that the first ocean water that reached the northern peak ring region entered through a N-NE gap in the Chicxulub outer rim. We estimate that this ocean water arrived at Site M0077 within 30 minutes after the impact and was relatively poor in rock debris. This water caused intense quench fragmentation when it interacted with the underlying hot impact melt rock, and this resulted in the emplacement of the ∼5.6-m-thick hyaloclastite-like, non-graded suevite unit. In the following hours, the impact structure was flooded by an ocean resurge rich in rock debris, which caused the phreatomagmatic processes to stop and the ∼89-m-thick graded suevite unit to be deposited. We interpret that after the energy of the resurge slowly dissipated, oscillating seiche waves took over the sedimentary regime and formed the ∼3.5-m-thick bedded suevite unit. The final stages of the formation of the impactite sequence (estimated to be <20 years after impact) were dominated by resuspension and slow atmospheric settling, including the final deposition of Chicxulub impactor debris. Cumulatively, the Site M0077 suevite sequence from the Chicxulub impact site preserved a high-resolution record that provides an unprecedented window for unravelling the dynamics and timing of proximal marine cratering processes in the direct aftermath of a large impact event.

Publisher

Geological Society of America

Subject

Geology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3