U-Pb dating of pedogenic calcite near the Permian−Triassic boundary, Karoo Basin, South Africa

Author:

Rochín-Bañaga Heriberto1,Gastaldo Robert A.2,Davis Donald W.1,Neveling Johann3,Kamo Sandra L.1,Looy Cindy V.4,Geissman John W.56

Affiliation:

1. 1Jack Satterly Geochronology Laboratory, Department of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada

2. 2Department of Geology, Colby College, Waterville, Maine 04901, USA

3. 3Council for Geosciences, Private Bag X112, Silverton, Pretoria 0001, South Africa

4. 4Department of Integrative Biology, Museum of Paleontology, University and Jepson Herbaria, University of California, Berkeley, 3060 Valley Life Sciences Building #3140, Berkeley, California 94720-3140, USA

5. 5Department of Geosciences, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA

6. 6Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA

Abstract

We report U-Pb age determinations of carbonate nodules from an in situ paleosol horizon in the Upper Permian Balfour Formation and from several horizons of pedogenic nodule conglomerate (PNC) in the Triassic Katberg Formation, Karoo Basin, South Africa, using laser ablation−inductively coupled plasma−mass spectrometry (LA-ICP-MS). The paleosol sample yields an age of 252 ± 3 Ma, which overlaps with a previous high-precision U-Pb zircon date from a volcanic ash deposit 2 m above the paleosol. This relationship demonstrates the reliability of using LA-ICP-MS dating techniques on terrestrial pedogenic calcite. Two PNC samples collected at the base of the Katberg Formation within the same sandstone unit yield ages of 255 ± 3 Ma and 251 ± 3 Ma. The age of 251 ± 3 Ma overlaps with the high-precision U-Pb zircon date below the PNC and is a maximum age estimate of deposition for the base of the Katberg Formation. Our results show that reworked nodules in the same concentrated conglomerate lag can be of different ages, but that similarly aged nodules are spatially associated. In addition, two PNC samples collected higher in the section yield ages of 249 ± 3 Ma and 241 ± 3 Ma, providing maximum depositional ages for the lower to middle Katberg Formation for the first time. We demonstrate that pedogenic carbonate nodules can be dated with meaningful precision, providing another mechanism for constraining the age of sedimentary sequences and studying events associated with the Permian−Triassic transition in the central Karoo Basin, even though the extinction boundary may not be preserved in this area.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3