Evolution of the Pleistocene Lake Tecopa beds, southeastern California: A stratigraphic and sedimentologic perspective

Author:

Larsen* Daniel1,Olson Kristian2

Affiliation:

1. Department of Earth Sciences, University of Memphis, Memphis, Tennessee 38152, USA

2. Department of Geological Sciences and Environmental Studies, Binghamton University, Binghamton, New York 13902, USA

Abstract

ABSTRACT The deposits of Pleistocene Lake Tecopa include lacustrine, alluvial, eolian, and groundwater discharge deposits of the Tecopa basin in southeastern California. Stratigraphic sections measured in the Tecopa basin and detailed sedimentary facies analysis were used to interpret the depositional settings and track the evolution of sedimentary processes in the basin during the Pleistocene. The early Pleistocene (ca. 2.4–1.0 Ma) deposits of the Lake Tecopa beds record deposition in small saline, alkaline lakes and playas with surrounding mudflats and sandflats and adjacent alluvial fans. Ancestral Amargosa River gravels are first observed in fluvial deposits in the northern part of the basin at ca. 1.0 Ma and correspond with lake expansions (Glass Mountain [GM] lakes) during deposition of the uppermost Glass Mountain ash beds. Several oscillations in lake level followed the post-GM lake decline, culminating in the basin-filling Lava Creek (LC) lake, which reached its acme during deposition of the 0.63 Ma Lava Creek B ash bed. The post–Lava Creek B strata reflect primarily alluvial, fluvial, eolian, and groundwater discharge depositional processes, punctuated in the youngest part of the section by basin-filling lakes (high lake 1 and 2). The Lava Creek B ash bed and older lacustrine strata exhibit extensive zeolitization and clay authigenesis, characteristic of saline, alkaline lake deposits, but the post–Lava Creek B ash bed lacustrine strata have only minor zeolite and clay alteration, suggesting fresher water conditions and a change in the hydrologic state of the basin. Sedimentological observations along with shoreline elevation data provide evidence for intermittent spillover of basin-filling lakes after ca. 0.63 Ma. Subtle tectonic deformation influenced sedimentary processes in the Tecopa basin throughout its history. Episodes of uplift and tilting of Lake Tecopa strata during the middle Pleistocene in the southern part of the basin along the Tecopa Hump likely controlled the sill elevation for spillover of the lake, creating accommodation space for late Pleistocene basin-filling lakes. Ultimately, decreased uplift could not keep pace with increased discharge resulting from high effective moisture during latest middle Pleistocene pluvial periods, and Lake Tecopa drained, most likely during or immediately after marine oxygen isotope stage (MIS) 10 (ca. 0.3 Ma). The deposits of Lake Tecopa provide a detailed record of Pleistocene paleoclimate from ca. 2.4 to 0.3 Ma that demonstrates Milankovitch-scale tuning and clarifies the amplitude of Pleistocene climate change in the southern Great Basin of North America.

Publisher

Geological Society of America

Reference127 articles.

1. Sedimentary Structures: Their Character and Physical Basis, Volume I;Allen;Amsterdam, Elsevier, Developments in Sedimentology 30,1984

2. Cosmogenic 3He estimates for the terminal highstand of Plio-Pleistocene Lake Tecopa, California: Integration of the upper Amargosa River with the Death Valley drainage basin;Anderson;Geological Society of America Abstracts with Programs,1998

3. Quantitative analysis of sedimentary minerals by powder X-ray diffraction;Bayliss;Powder Diffraction,1986

4. Pliocene–Pleistocene stratigraphy and depositional environments, southern Confidence Hills, Death Valley, California;Beratan;Cenozoic Basins of the Death Valley Region: Geological Society of America Special Paper 333,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3