Biomarker evidence for nitrogen-fixing cyanobacterial blooms in a brackish surface layer in the Nile River plume during sapropel deposition

Author:

Bale Nicole J.1,Hennekam Rick2,Hopmans Ellen C.1,Dorhout Denise1,Reichart Gert-Jan23,van der Meer Marcel1,Villareal Tracy A.4,Sinninghe Damsté Jaap S.13,Schouten Stefan13

Affiliation:

1. Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research and Utrecht University, 1790 AB Den Burg, Netherlands

2. Department of Ocean Systems, NIOZ Royal Institute for Sea Research and Utrecht University, 1790 AB Den Burg, Netherlands

3. Department of Earth Sciences, Faculty of Geosciences, Utrecht University, P.O. Box 80.121, 3508 TA Utrecht, Netherlands

4. Marine Science Institute, The University of Texas at Austin, Port Aransas, Texas 78373, USA

Abstract

Abstract Sapropels are organic-rich sediment layers deposited in the eastern Mediterranean Sea during precession minima, resulting from an increase in export productivity and/or preservation. Increased freshwater delivery from the African continent resulted in stratification, causing deepwater anoxia, while nutrient input stimulated productivity, presumably at the deep chlorophyll maximum. Previous studies have suggested that during sapropel deposition, nitrogen fixation was widespread in the highly stratified surface waters, and that cyanobacteria symbiotic with diatoms (diatom-diazotroph associations, DDAs) were responsible. Here we analyzed sapropel S5 sediments for heterocyst glycolipids (HGs) from three locations in the eastern Mediterranean. HG biomarkers can differentiate between those heterocystous cyanobacteria that are free living (found predominately in freshwater or brackish environments) and those that are from DDAs (found in marine settings). In our primary core, from a location which would have been influenced by the Nile River outflow, we detected a HG with a pentose (C5) head group specific for DDAs. However, HGs with a hexose (C6) head group, specific to free-living cyanobacteria, were present in substantially (up to 60×) higher concentration. These data suggest that at our study location, free-living cyanobacteria were the dominant diazotrophs, rather than DDAs. The C6 HGs increased substantially at the onset of sapropel S5 deposition, suggesting that substantial seasonal cyanobacterial blooms were associated with a brackish surface layer flowing from the Nile into the eastern Mediterranean. Two additional S5 sapropels were analyzed, one also from the Nile delta region and one from the region between Libya and southwestern Crete. Overall, comparison of the HG distribution in the three S5 sapropels provides evidence that all three locations were initially influenced by surface salinities that were sufficiently low to support free-living heterocystous cyanobacteria. While free-living heterocystous cyanobacteria continued to outnumber DDAs during sapropel deposition at the two Nile-influenced sites, DDAs, indicators of persistent marine salinities, were the dominant diazotrophs in the upper part of the sapropel at the more westerly site. These results indicate that N2 fixation by free-living cyanobacteria offers an important additional mechanism to stimulate productivity in regions with strong river discharge during sapropel deposition.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3