Evolution and uranium mineralization of the northern Ordos Basin revealed by detrital zircons of the Jurassic strata

Author:

Liu Yuan1,Liu Hang12,Jiao Yang-Quan3,Zhao Jun-Hong1

Affiliation:

1. 1State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China

2. 2School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China

3. 3Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences), Ministry of Education, Wuhan 430074, China

Abstract

Stable sedimentary basins with complex evolutionary histories generally develop various epigenetic resources, such as sandstone-type uranium deposits. However, the genetic linkage between basin evolution and subsequent uranium mineralization remains unclear. Detrital zircon is a robust mineral, and its U-Pb ages and Lu-Hf isotopes are essential for tracing the evolution of sedimentary basins. The Ordos Basin is the largest intracontinental basin and uranium deposit region in the North China Craton. It consists of Cambrian to Ordovician marine deposits and Carboniferous to Jurassic terrestrial successions, and the origins of the terrigenous clastic sequences are dominantly influenced by the neighboring orogenic belts. This study presents new whole-rock elemental data, detrital zircon U-Pb ages, and Lu-Hf isotopes for the sandstones from the Jurassic Zhiluo Formation of the northern Ordos Basin. With data from the Paleozoic sedimentary rocks of the basin and the southern Central Asian Orogenic Belt, this study aimed to determine sediment provenances, the evolution of the northern Ordos Basin, and the potential implications for uranium mineralization. Detrital zircons from the Zhiluo Formation are generally rounded and preserve magmatic zoning structures. Their ages display four populations, 330−245 Ma, 470−350 Ma, 2100−1650 Ma, and 2750−2200 Ma, which are consistent with the tectono-thermal events of the Central Asian Orogenic Belt and the Yinshan Belt to the north, and the Alxa Block to the northwest. Both their detrital zircon ages and εHf(t) values are similar to those of the underlying sedimentary rocks. In addition, the formation has recycled carbonaceous debris, diverse clastic fragments, and Triassic fossils, and its sandstones show low index of compositional variability values (0.79−0.97) and high SiO2/Al2O3 (5.33−7.25) and Th/Sc (0.71−1.97) ratios. These lines of evidence suggest that the detritus of the Zhiluo Formation was partially derived from the underlying sedimentary strata. It should be noted that the Paleozoic to Mesozoic strata of the northern Ordos Basin also have detrital zircon age patterns and εHf(t) values similar to those of the southern Central Asian Orogenic Belt, and the secular evolution of the Ordos Basin is therefore considered to have been controlled by subduction of the Paleo-Asian Ocean and collision between the Central Asian Orogenic Belt and the North China Craton, as well as the post-collisional crustal extension that ensued. The carbonaceous debris in the Zhiluo Formation provided a reductive environment for the subsequent crystallization of reducing minerals and uranium mineralization.

Publisher

Geological Society of America

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3