Evidence for a more extensive Greenland Ice Sheet in southwestern Greenland during the Last Glacial Maximum

Author:

Sbarra Christopher M.1,Briner Jason P.1ORCID,Graham Brandon L.1,Poinar Kristin1,Thomas Elizabeth K.1,Young Nicolás E.2

Affiliation:

1. 1Department of Geology, 126 Cooke Hall, University at Buffalo, Buffalo, New York 14260, USA

2. 2Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, New York 10964, USA

Abstract

Abstract The maximum extent and elevation of the Greenland Ice Sheet in southwestern Greenland during the Last Glacial Maximum (LGM, 26–19.5 ka) is poorly constrained. Yet, the size of the Greenland Ice Sheet during the LGM helps to inform estimates of past ice-sheet sensitivity to climate change and provides benchmarks for ice-sheet modeling. Reconstructions of LGM ice extents vary between an inner continental shelf minimum, a mid-shelf position, and a maximum extent at the shelf break. We use three approaches to resolve LGM ice extent in the Sisimiut sector of southwestern Greenland. First, we explore the likelihood of minimum versus maximum Greenland Ice Sheet reconstructions using existing relative sea-level data. We use an empirical relationship between marine limit elevation and distance to LGM terminus established from other Northern Hemisphere Pleistocene ice sheets as context for interpreting marine limit data in southwestern Greenland. Our analysis supports a maximum regional Greenland Ice Sheet extent to the shelf break during the LGM. Second, we apply a simple 1-D crustal rebound model to simulate relative sea-level curves for contrasting ice-sheet sizes and compare these simulated curves with existing relative sea-level data. The only realistic ice-sheet configuration resulting in relative sea-level model-data fit suggests that the Greenland Ice Sheet terminated at the shelf break during the LGM. Lastly, we constrain the LGM ice-sheet thickness using cosmogenic 10Be, 26Al, and 14C exposure dating from two summit areas, one at 381 m above sea level at the coast, and another at 798 m asl 32 km inland. Twenty-four cosmogenic radionuclide measurements, combined with results of our first two approaches, reveal that our targeted summits were likely ice-covered during the LGM and became deglaciated at ca. 11.6 ka. Inventories of in situ 14C in bedrock at one summit point to a small degree of inherited 14C and suggest that the Greenland Ice Sheet advanced to its maximum late Pleistocene extent at 17.1 ± 2.5 ka. Our results point to a configuration where the southwestern part of the Greenland Ice Sheet reached its maximum LGM extent at the continental shelf break.

Publisher

Geological Society of America

Subject

Stratigraphy,Geology

Reference80 articles.

1. Pattern and cause of variability of postglacial uplift and rate of uplift in Arctic Canada;Andrews;The Journal of Geology,1968

2. Postglacial rebound in Arctic Canada: Similarity and prediction of uplift curves;Andrews;Canadian Journal of Earth Sciences,1968

3. Glacial Systems: An Approach to Glaciers and their Environments;Andrews,1975

4. Late-glacial chronology and glacio-isostatic recovery, Home Bay, East Baffin Island, Canada;Andrews;Geological Society of America Bulletin,1970

5. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements;Balco;Quaternary Geochronology,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3