Fluid-driven cyclic reorganization in shallow basaltic fault zones

Author:

Bamberg Bob1ORCID,Walker Richard12,Reichow Marc1,Ougier-Simonin Audrey3

Affiliation:

1. 1School of Geography, Geology, and the Environment, University of Leicester, University Road, Leicester LE1 7RH, UK

2. 2Department of Earth and Planetary Sciences, University of California, Davis, 1 Shields Avenue, Davis, California 95616, USA

3. 3Rock Mechanics and Physics Laboratory, British Geological Survey, Nicker Hill, Keyworth, Nottingham NG21 5GG, UK

Abstract

Abstract Faults represent a critical heterogeneity in basaltic sequences, yet few studies have focused on their architectural and hydromechanical evolution. We present a detailed, multi-scale characterization of passively exhumed fault zones from the layered basalts of the Faroe Islands, which reveals cyclic stages of fault evolution. Outcrop-scale structures and fault rock distribution within the fault zones were mapped in the field and in 3-D virtual outcrop models, with detailed characterization of fault rock microstructure obtained from optical and scanning electron microscopy. The fault zones record deformation localization from decameter-wide Riedel shear zones into meter-wide fault cores that contain multiple cataclastic shear bands and low-strain lenses organized around a central slip zone. Shear bands and the slip zone consist of (ultra-) cataclasites with a zeolite-smectite assemblage replacing the original plagioclase-pyroxene host rock composition. Low-strain lenses are breccias of weakly altered host rock or reworked fault rocks. Slip zone-proximal zones show significant late-stage dilatation in the form of hydrothermal breccias or tabular veins with up to decimeter apertures. We interpret these structures as evolving from alternating shear-compaction and dilation through hydrofracture. The fault core preserves slip zone reworking, which is interpreted to indicate repeated shear zone locking and migration. The alternating deformation styles of shear-compaction and dilatation suggest episodic changes in deformation mechanisms driven by transient overpressure and release. The fault zone mechanical properties are thus governed by the combined effects of permanent chemical weakening and transient fluid-mediated mechanical weakening, alternating with cementation and healing. We suggest that the model presented for fault evolution should apply widely to shallow, basalt-hosted fault zones.

Publisher

Geological Society of America

Subject

Stratigraphy,Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3