Geodetic constraints on three-component motion of the Ordos block (China) and their implications for lithospheric dynamics

Author:

Li Zhangjun123,Hao Ming24,Hammond William C.5,Cheng Feng1,Zhang Guoqing2,Wang Qingliang2,Liu Liwei2,Hou Bowen2,Gan Weijun3

Affiliation:

1. 1Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing 100871, China

2. 2The Second Monitoring and Application Center, China Earthquake Administration, Xi’an 710054, China

3. 3Shanxi Taiyuan Continental Rift Dynamics National Observation and Research Station, Taiyuan, Shanxi 030021, China

4. 4Southern Laboratory of Ocean Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China

5. 5Nevada Geodetic Laboratory, Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada 89557, USA

Abstract

The Ordos block is a rigid portion of the North China Craton lying within the India-Eurasia collision zone that experiences little internal deformation, but is surrounded by active faulting, extensional grabens, and seismicity. In the surrounding region, geodetic studies have imaged complex crustal deformation, while seismic studies have suggested that the lithosphere is encountering regional modification by mantle convection. The Ordos block thus presents a valuable opportunity to compare seismic and geodetic constraints and investigate geodynamic processes affecting the region’s lithosphere. We here robustly image vertical land motion and horizontal strain rates using observations from the geographically extensive Global Navigation Satellite System and leveling networks in and around the Ordos block. Our results indicate that the Ordos block uplifts with some lateral variability at 0.5−2.0 mm/yr. In the northeastern Ordos block and Datong volcanic area, the crustal uplift rates are 2.0−4.0 mm/yr on average, much faster than those elsewhere on the block. We correct for non-tectonic vertical motion from surface hydrological loading and glacial isostatic adjustment, finding that these do not explain the vertical rate anomalies. Horizontal crustal extension and uplift are accompanied by a pattern of crustal contraction at the Datong volcanic field. Additionally, we find uplift west of and subsidence east of the Qinling Orogenic Belt, which are inconsistent with eastward crustal extrusion along it, suggesting instead a negligible migration of crustal materials especially to the east of 106°E. Comparing the geodetic measurements to evidence from seismic velocity anomalies and numerical simulation, we argue that the motions are consistent with lithospheric re-equilibration resulting from the heterogeneous thinning of the lithosphere by convective mantle upwelling and radial flow as well as shortening from the India-Eurasia collision.

Publisher

Geological Society of America

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3