In situRaman observations reveal that the gas fluxes of diffuse flow in hydrothermal systems are greatly underestimated

Author:

Li Lianfu123,Luan Zhendong123,Du Zengfeng12,Xi Shichuan12,Yan Jun12,Zhang Xin123

Affiliation:

1. 1Key Laboratory of Marine Geology and Environment, and Center for Deep Sea Research, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China

2. 2Laboratory for Marine Geology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266061, China

3. 3University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

AbstractReduced gases released from hydrothermal vents supply energy to local deep-marine ecosystems and play an important role in global biogeochemical cycles of sulfur and carbon. The habitable, lower-temperature diffuse flow sites in a hydrothermal system generally have higher biomass than focused flow sites. However, a scarcity of observational data of diffuse flows limits our understanding of the role of volatile gases in these environments. We deployed in situ Raman spectroscopy in the Iheya North hydrothermal field of the mid–Okinawa Trough (East China Sea). A Raman probe inserted directly into hydrothermal vent orifices with temperatures of 30–302 °C collected Raman spectra of hydrothermal fluids. In situ observation data show that the greater volume of diffuse flows results in a flux of volatile gases one to two orders of magnitude higher than that from focused flow environments. This indicates the great potential of diffuse flow for supplying energy and material to hydrothermal systems. The role played by diffuse flow should be reassessed.

Publisher

Geological Society of America

Subject

Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3