Geothermal energy and ore-forming potential of 600 °C mid-ocean-ridge hydrothermal fluids

Author:

Bali Enikő1,Aradi László E.2,Zierenberg Robert3,Diamond Larryn W.4,Pettke Thomas4,Szabó Ábel2,Guðfinnsson Guðmundur H.1,Friðleifsson Guðmundur Ó.5,Szabó Csaba2

Affiliation:

1. Nordic Volcanological Center, Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland

2. Lithosphere Fluid Research Laboratory, Institute of Geography and Earth Sciences, Eötvös University, Pázmány p. sétány 1/C, 1117 Budapest, Hungary

3. Earth and Planetary Sciences, University of California–Davis, One Shields Avenue, Davis, California 95616, USA

4. Institute of Geological Sciences, University of Bern, Baltzerstrasse 3, 3012 Bern, Switzerland

5. Iceland Deep Drilling Project (IDDP) Office, Vidilundur 10, 210 Gardabaer, Iceland

Abstract

Abstract The ∼4500-m-deep Iceland Deep Drilling Project (IDDP) borehole IDDP-2 in Iceland penetrated the root of an active seawater-recharged hydrothermal system below the Mid-Atlantic Ridge. As direct sampling of pristine free fluid was impossible, we used fluid inclusions to constrain the in situ conditions and fluid composition at the bottom of the hydrothermal convection cell. The fluid temperature is ∼600 °C, and its pressure is near-hydrostatic (∼45 MPa). The fluid exists as two separate phases: an H2O-rich vapor (with an enthalpy of ∼59.4 kJ/mol) and an Fe-K–rich brine containing 2000 µg/g Cu, 3.5 µg/g Ag, 1.4 µg/g U, and 0.14 µg/g Au. Occasionally, the fluid inclusions coexist with rhyolite melt inclusions. These findings indicate that the borehole intersected high-energy steam, which is valuable for energy production, and discovered a potentially ore-forming brine. We suggest that similar fluids circulate deep beneath mid-ocean ridges worldwide and form volcanogenic massive sulfide Cu-Zn-Au-Ag ore deposits.

Publisher

Geological Society of America

Subject

Geology

Reference29 articles.

1. Part III: Fluid handling and evaluation;Albertsson,2003

2. IDDP—The chemistry of the IDDP-01 well fluids in relation to the geochemistry of the Krafla geothermal system;Ármannsson;Geothermics,2014

3. Major element chemistry of the geothermal sea-water at Reykjanes and Svartsengi, Iceland;Arnórsson;Mineralogical Magazine,1978

4. Geothermal systems in Iceland: Structure and conceptual models—I;Arnórsson;High temperature areas: Geothermics,1995

5. The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions;Audétat;Economic Geology and the Bulletin of the Society of Economic Geologists,2008

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fluid-rock interaction: A mineral deposits perspective;Reference Module in Earth Systems and Environmental Sciences;2024

2. The geochemistry of continental hydrothermal systems;Reference Module in Earth Systems and Environmental Sciences;2024

3. Transdimensional ambient-noise surface wave tomography of the Reykjanes Peninsula, SW Iceland;Geophysical Journal International;2023-11-02

4. Active metal deposition in a giant geothermal system;Terra Nova;2023-04-19

5. The behaviour of metals in deep fluids of NE Iceland;Scientific Reports;2022-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3