Insights into magma dynamics at Etna (Sicily) from SO2 and HCl fluxes during the 2008–2009 eruption

Author:

Spina A. La1,Burton M.2,Salerno G.1,Caltabiano T.1

Affiliation:

1. 1Istituto Nazionale di Geofisica e Vulcanologia–Osservatorio Etneo, 95125 Catania, Italy

2. 2School of Earth and Environmental Science, University of Manchester, Manchester M13 9PL, UK

Abstract

Abstract Magma convection, where low-viscosity, gas-rich magma ascends, degasses, and crystallizes before sinking down the same conduit in either annular or side-by-side flows, has been proposed for active basaltic volcanoes, where excess gas fluxes relative to erupted lava volume can be observed. Experimental studies show that convection is produced by buoyant ascending gas-rich magma and descending degassed magmas following density difference contrast, while geophysical studies point to the endogenous growth of active volcanoes through magma accumulation in plutons. However, many aspects of the convection process remain unclear, in particular, the depth to which magma ascends before overturning. Models have been proposed where overturn occurs near the surface and also at depths greater than 2 km from the top of the magma-filled conduit. The long-term monitoring of volcanic gas compositions may reveal new insights into the convection process, as each gas has a unique solubility-pressure profile. We report measurements of SO2 and HCl gas fluxes from Etna between October 2007 and May 2011, in which an ~90% collapse in halogen flux was observed together with an effusive eruption. This observation indicates that the halogen fluxes, during quiescent periods on Etna, require both magma supply to the shallowest levels and a period of residence. The lava effusion has the effect of reducing the shallow residence time, drastically reducing the halogen flux. These results provide a new interpretative framework for the degassing process and gas composition monitoring to explain subtle variations in magma supply and residence times in basaltic volcanism.

Publisher

Geological Society of America

Subject

Geology

Reference36 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3