Immiscible two-phase model for air blasts created during natural avalanches

Author:

Fei Jianbo123,Liu Zhankui1,Jie Yuxin4

Affiliation:

1. 1Key Laboratory of Coastal Urban Resilient Infrastructures, Shenzhen University, Shenzhen 518060, China

2. 2College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China

3. 3Shenzhen Key Laboratory of Green, Efficient and Intelligent Construction of Underground Metro Station

4. 4State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China

Abstract

An immiscible two-phase model based on the incompressible Navier-Stokes (N-S) equations is used to simulate the air blast generated by an avalanche. For simplicity, the avalanche is treated as an assembly of monodisperse spherical grains and described as a continuous media. The constitutive law of local µ(I) rheology is introduced to model the moving granular material. The motion of the avalanche and the induced air blast fits into a unified framework that combines the N-S−type governing equations with a µ(I)-rheology−based kinematic viscosity and a constant viscosity. The avalanche-air interface is treated using the volume-of-fluid method. A numerical program was developed on the open-source platform OpenFOAM specifically for this model to simulate the entire evolutionary process of the avalanche as well as the air blast generated. The model was validated by comparing the results of numerical simulations with those from inclined-plane laboratory experiments. With terrain input from the Shuttle Radar Topography Mission data, the model was further applied to simulate the air blast generated in two natural avalanches, namely, the Baige and Wenjia valley avalanches fo China, which occurred in 2008 and 2018, respectively. The simulation results were found to be consistent with field observations following a statistical analysis of the properties of the air blast including flow speed and area of impact of the above-mentioned natural events.

Publisher

Geological Society of America

Subject

Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3