The impact of postdepositional alteration on iron- and molybdenum-based redox proxies

Author:

Eroglu Suemeyya1,Scholz Florian1,Salvatteci Renato23,Siebert Christopher1,Schneider Ralph2,Frank Martin12

Affiliation:

1. GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany

2. Institute of Geosciences, Kiel University, Ludewig-Meyn-Straße 10, 24118 Kiel, Germany

3. Center for Ocean and Society, Kiel University, Neufeldtstraße 10, 24118 Kiel, Germany

Abstract

Abstract Ratios of (un)reactive iron species, authigenic molybdenum contents (Moauth), and molybdenum isotope compositions (δ98Moauth) in sedimentary rocks are geochemical proxies that are widely used to reconstruct past marine redox states, which have been calibrated in modern marine settings covering oxic to euxinic conditions. However, syn- and postdepositional processes can result in alterations and ambiguities of proxy-derived redox signals that can challenge the validity of paleoreconstructions. We present new data from modern organic-rich sediments of two oxygen minimum zone settings in the Gulf of California and the Peruvian margin. The results show that Mo is fully immobilized shortly after deposition by reaction with hydrogen sulfide (H2S) produced during organoclastic sulfate reduction. Thus, any H2S produced deeper in the sediment (e.g., by sulfate reduction coupled to anaerobic methane oxidation) leaves the initially deposited Mo concentrations and δ98Mo signatures unaltered, which supports the robustness of Mo-based redox proxies. In contrast, the Fe speciation data reveal continued pyritization due to constant exposure of Fe minerals to H2S. Importantly, both Fe bound to oxides and carbonates (highly reactive Fe) and also poorly reactive Fe (e.g., sheet silicates) undergo pyritization during early diagenesis. This process generates Fe-based proxy signatures that falsely imply ferruginous or euxinic conditions.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3