Massive rare earth element storage in sub-continental lithospheric mantle initiated by diapirism, not by melting

Author:

Zhu XinXiang1,Liu Yan1ORCID,Hou Zengqian1

Affiliation:

1. SinoProbe Laboratory, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, People’s Republic of China

Abstract

Abstract Rare earth elements (REEs) are essential metals for modern technologies. Recent studies suggest that subcontinental lithospheric mantle (SCLM) remelting, previously fertilized by subducted marine sediments, leads to formation of REE-bearing rocks. However, the transfer mechanism of REE-rich sediments from the subducted slab to the overlying mantle wedge is unclear. We present high-pressure experiments on natural REE-rich marine sediments at 3–4 GPa and 800–1000 °C to constrain the phase relations, sediment melting behavior, and REE migration during subduction. Our results show recrystallization into an eclogite-like assemblage, with melting only occurring at 4 GPa, 1000 °C, experiments. Regardless of melting behavior, REE are refractory and mostly hosted by apatite. Buoyancy calculations suggest that most of the eclogite-like residues would form solid-state diapirs, ascending to the SCLM, resulting in the REE-fertilized source. Such flux may be required for substantial REE transport during subduction, as a foundation for economic-grade mineralization.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3