Further evidence for the Matanuska megaflood hypothesis, Alaska

Author:

Wiedmer R. Michael12,Gillespie Alan R.2,Montgomery David R.2,Greenberg Harvey M.2

Affiliation:

1. School of Environmental and Forest Sciences, College of the Environment, University of Washington, Box 352100, Seattle, Washington 98195, USA

2. Quaternary Research Center, University of Washington, Seattle, Washington 98195, USA

Abstract

ABSTRACT The Matanuska lowland north of Anchorage, Alaska, was episodically glaciated during the Pleistocene by the merged westward flow of the Matanuska and Knik glaciers. During the late Wisconsin glaciation, glacial Lake Atna filled the Copper River Basin, impounded by an ice dam blocking the Matanuska drainage divide at Tahneta Pass and the adjacent Squaw Creek headwaters and ice dams at other basin outlets, including the Susitna and Copper rivers. On the Matanuska lowland floor upvalley from the coalesced glacier’s late-Wisconsin terminus, a series of regularly spaced, symmetrical ridges with 0.9-km wavelengths and heights to 36 m are oriented normal to oblique to the valley and covered by smaller subparallel ridges with wavelengths typically ~80 m and amplitudes to 3 m. These and nearby drumlins, eskers, and moraines were previously interpreted to be glacial in origin. Borrow-pit exposures in the large ridges, however, show sorting and stratification, locally with foreset bedding. A decade ago we reinterpreted such observations as evidence of outburst flooding during glacial retreat, driven by water flushing from Lake Atna through breaches in the Tahneta Pass and Squaw Creek ice dam. In this view, the ridges once labeled Rogen and De Geer moraines were reinterpreted as two scales of fluvial dunes. New observations in the field and from meter-scale light detection and ranging (LiDAR) and interferometric synthetic aperture radar (IfSAR) digital elevation models, together with grain-size analyses and ground-penetrating radar profiles, provide further evidence that portions of the glacial landscape of the Matanuska lowlands were modified by megaflooding after the Last Glacial Maximum, and support the conclusion that the Knik Glacier was the last active glacier in the lowland.

Publisher

Geological Society of America

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3