Thermotectonic events recorded by U-Pb geochronology and Zr-in-rutile thermometry of Ti oxides in basement rocks along the P2 fault, eastern Athabasca Basin, Saskatchewan, Canada

Author:

Adlakha E.12,Hattori K.2

Affiliation:

1. Department of Geology, Saint Mary’s University, 923 Robie Street, Halifax, Nova Scotia B3H3C3, Canada

2. Department of Earth and Environmental Sciences, University of Ottawa, 25 Templeton Street, Ottawa, Ontario K1N6N5, Canada

Abstract

Basement rocks below the Athabasca Basin, Saskatchewan, have been intensely altered through paleoweathering and multiple hydrothermal events, including the formation of world-class unconformity-type uranium deposits. Here, we demonstrate the utility of Ti-oxide thermochronology for identifying thermotectonic events in these altered rocks leading to uranium mineralization along basement structures. Rutile grains along the P2 fault, a major fault in the eastern Athabasca Basin, exhibit 207Pb/206Pb ages of ca. 1850−1700 Ma, with a weighted mean of 1757 ± 6 Ma (mean square of weighted deviation [MSWD] = 1.4, n = 116). The older ages (>1770 Ma) record regional metamorphism reaching a temperature of 875 °C during the Trans-Hudson orogeny. Pb diffusion modeling indicates that metamorphic rutile should exhibit cooling ages of 1760−1750 Ma. Rutile grains showing young ages, <1750 Ma, reflect isotopic resetting during regional asthenospheric upwelling between 1770 and 1730 Ma related to the emplacement of the Kivalliq igneous suite to the north. This thermotectonic event (temperature > 550 °C) promoted hydrothermal activity to produce silicified rocks, i.e., “quartzite,” along the P2 fault, which later focused mineralizing fluids for unconformity-type uranium deposits. The young rutile ages also indicate that the basement rocks remained hot until 1700 Ma, providing the maximum age for the deposition of the Athabasca sediments. Anatase yields a concordia age of 1569 ± 31 Ma (MSWD = 0.30, n = 5), which is within uncertainty of the oldest ages for uraninite of the McArthur River deposit. This age corresponds to the incursion of basinal fluids in the basement along the P2 fault during uranium mineralization.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3