Recognition and significance of Upper Devonian fluvial, estuarine, and mixed siliciclastic-carbonate nearshore marine facies in the San Juan Mountains (southwestern Colorado, USA): Multiple incised valleys backfilled by lowstand and transgressive systems tracts

Author:

Evans James E.1,Maurer Joshua T.12,Holm-Denoma Christopher S.3

Affiliation:

1. Department of Geology, Bowling Green State University, Bowling Green, Ohio 43403, USA

2. Carmeuse Lime and Stone Company, 6104 Grand Avenue, Suite B, Pittsburgh, Pennsylvania 15225, USA

3. Geology, Geophysics, and Geochemistry Science Center, U.S. Geological Survey, Denver Federal Center, Denver, Colorado 80225, USA

Abstract

Abstract The Upper Devonian Ignacio Formation (as stratigraphically revised) comprises a transgressive, tide-dominated estuarine depositional system in the San Juan Mountains (Colorado, USA). The unit backfills at least three bedrock paleovalleys (10–30 km wide and ≥42 m deep) with a consistent stratigraphy of tidally influenced fluvial, bayhead-delta, central estuarine-basin, mixed tidal-flat, and estuarine-mouth tidal sandbar deposits. Paleovalleys were oriented northwest while longshore transport was to the north. The deposits represent Upper Devonian lowstand and transgressive systems tracts. The overlying Upper Devonian Elbert Formation (upper member) consists of geographically extensive tidal-flat deposits and is interpreted as mixed siliciclastic-carbonate bay-fill facies that represents an early highstand systems tract. Stratigraphic revision of the Ignacio Formation includes reassigning the basal conglomerate to the East Lime Creek Conglomerate, recognizing an unconformity separating these two units, and incorporating strata previously mapped as the McCracken Sandstone Member (Elbert Formation) into the Ignacio Formation. The Ignacio Formation was previously interpreted as Cambrian, but evidence that it is Devonian includes reexamined fossil data and detrital zircon U-Pb geochronology. The Ignacio Formation has a stratigraphic trend of detrital zircon ages shifting from a single ca. 1.7 Ga age peak to bimodal ca. 1.4 Ga and ca. 1.7 Ga age peaks, which represents local source-area unroofing history. Specifically, the upper plate of a Proterozoic thrust system (ca. 1.7 Ga Twilight Gneiss) was eroded prior to exposure of the lower plate (ca. 1.4 Ga Uncompahgre Formation). These results are a significant alternative interpretation of the geologic history of the southern Rocky Mountains.

Publisher

Geological Society of America

Subject

Stratigraphy,Geology

Reference117 articles.

1. Dynamic spatial and temporal prediction of changes in depositional processes on clastic shorelines: Towards improved subsurface uncertainty reduction and management;Ainsworth;American Association of Petroleum Geologists Bulletin,2011

2. Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwest Alberta;Aitken;Journal of Sedimentary Petrology,1967

3. Sedimentary processes and facies in the Gironde estuary: A recent model for macrotidal estuarine systems;Allen,1991

4. Sequence stratigraphy and facies model of an incised valley fill: The Gironde estuary, France;Allen;Journal of Sedimentary Petrology,1993

5. Evolution of the Mazatzal province and the timing of the Mazatzal orogeny: Insights from U-Pb geochronology and geochemistry of igneous and metasedimentary rocks in southern New Mexico;Amato,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3