Identification of Jurassic mafic arc magmatism in the eastern North China Craton: Geochemical evidence for westward subduction of the Paleo-Pacific slab

Author:

Fang Wei1,Dai Li-Qun12,Zheng Yong-Fei12,Zhao Zi-Fu12,Ma Li-Tao1,Zhao Kai1

Affiliation:

1. Chinese Academy of Sciences (CAS) Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

2. Center of Excellence in Comparative Planetology, Chinese Academy of Sciences (CAS), Hefei 230026, China

Abstract

Subduction of the Paleo-Pacific slab beneath the North China Craton (NCC) has exerted a strong influence on the Mesozoic destruction of the craton. However, no Andean-type arc magmatism has been reliably identified in the eastern NCC. Here we report the occurrence of Jurassic arc-like lamprophyres in the Liaodong Peninsula, providing a snapshot of the Paleo-Pacific slab subduction beneath the NCC in the early Mesozoic. Zircon U-Pb dating of the lamprophyres yields consistent ages of 158−155 Ma for magma crystallization. These lamprophyres all exhibit typical arc-like trace element distribution patterns, but show a series differences in their radiogenic isotope compositions and the other geochemical variables. Type 1 lamprophyres exhibit weakly enriched Sr-Nd-Hf isotopes with (87Sr/86Sr)i ratios of 0.7075−0.7085, εNd(t) values of −3.9 to −1.3 and εHf(t) values of −5.4 to −0.3, whereas Type 2 lamprophyres exhibit moderately enriched radiogenic isotopes with (87Sr/86Sr)i ratios of 0.7096−0.7117, εNd(t) values of −12.2 to −7.6 and εHf(t) values of −12.8 to −4.7. There are also systematic differences in zircon Hf isotopes and whole-rock Ba/Th, Ba/La, Sr/Nd, Th/Nd, Th/Yb, and La/Sm ratios for the two types of lamprophyre. Taken together, these similarities and differences can be accounted for by metasomatic reaction of the cratonic mantle wedge with two properties of liquid phase derived from subducting Paleo-Pacific slab. One is aqueous solutions from the subducting basaltic oceanic crust, and the other is hydrous melts from the subducting terrigenous. The two properties of subduction zone fluids were incorporated in different proportions into the mantle sources of these lamprophyres. Accordingly, the lamprophyres were derived from the metasomatic mantle sources. This qualitative interpretation is verified by quantitative modeling of the geochemical transfer at the slab-mantle interface in a paleo-oceanic subduction zone. Therefore, the Jurassic lamprophyres in the eastern NCC provide the geochemical evidence for the crust-mantle interaction during the Paleo-Pacific slab subduction beneath eastern Asia in the early Mesozoic, when the chemical metasomatism by the slab-derived fluids would have weakened the cratonic mantle for its thinning and destruction in the Early Cretaceous.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3